論文の概要: Predicting Embedding Reliability in Low-Resource Settings Using Corpus
Similarity Measures
- arxiv url: http://arxiv.org/abs/2206.04330v1
- Date: Thu, 9 Jun 2022 08:13:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-11 00:08:29.076968
- Title: Predicting Embedding Reliability in Low-Resource Settings Using Corpus
Similarity Measures
- Title(参考訳): コーパス類似度尺度を用いた低リソース環境における組込み信頼性の予測
- Authors: Jonathan Dunn and Haipeng Li and Damian Sastre
- Abstract要約: 本稿では17言語にわたる低リソース設定をシミュレートする。
トレーニング前にコーパス類似度を使用して、トレーニング後の埋め込み特性を予測することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper simulates a low-resource setting across 17 languages in order to
evaluate embedding similarity, stability, and reliability under different
conditions. The goal is to use corpus similarity measures before training to
predict properties of embeddings after training. The main contribution of the
paper is to show that it is possible to predict downstream embedding similarity
using upstream corpus similarity measures. This finding is then applied to
low-resource settings by modelling the reliability of embeddings created from
very limited training data. Results show that it is possible to estimate the
reliability of low-resource embeddings using corpus similarity measures that
remain robust on small amounts of data. These findings have significant
implications for the evaluation of truly low-resource languages in which such
systematic downstream validation methods are not possible because of data
limitations.
- Abstract(参考訳): 本稿では,17言語にまたがる低リソース設定をシミュレートし,異なる条件下での類似性,安定性,信頼性を評価する。
目標は、トレーニング前にコーパス類似度を使用して、トレーニング後の埋め込み特性を予測することである。
本論文の主な貢献は,上流コーパス類似度測定を用いて下流埋め込み類似度を予測することができることを示すことである。
この発見は、非常に限られたトレーニングデータから生成された埋め込みの信頼性をモデル化することで、低リソース設定に適用される。
その結果,少量のデータに対して頑健なコーパス類似度尺度を用いて,低リソース組込みの信頼性を推定できることがわかった。
これらの結果は、データ制限のため、このような体系的な下流検証方法が不可能な、真の低リソース言語の評価に重大な影響を及ぼす。
関連論文リスト
- Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method [108.56493934296687]
本研究では,乱数から発散する概念に触発された偏差に基づくキャリブレーション手法を導入し,プリトレーニングデータ検出のためのトークン確率のキャリブレーションを行う。
我々は,中国語テキスト上でのLLMの検出手法の性能を評価するために,中国語のベンチマークであるPatentMIAを開発した。
論文 参考訳(メタデータ) (2024-09-23T07:55:35Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - TeLeS: Temporal Lexeme Similarity Score to Estimate Confidence in
End-to-End ASR [1.8477401359673709]
クラス確率に基づく信頼スコアは、自信過剰なASR予測の品質を正確に表すものではない。
信頼度推定モデル(CEM)を訓練するためのTeLeS(Temporal-Lexeme similarity)の信頼性スコアを提案する。
我々は、ヒンディー語、タミル語、カナダ語という3つの言語で訓練されたASRモデルを用いて、様々なトレーニングデータサイズで実験を行う。
論文 参考訳(メタデータ) (2024-01-06T16:29:13Z) - Provable Robustness for Streaming Models with a Sliding Window [51.85182389861261]
オンラインコンテンツレコメンデーションや株式市場分析のようなディープラーニングアプリケーションでは、モデルは過去のデータを使って予測を行う。
入力ストリーム上の固定サイズのスライディングウインドウを使用するモデルに対して、ロバスト性証明を導出する。
私たちの保証は、ストリーム全体の平均モデルパフォーマンスを保ち、ストリームサイズに依存しないので、大きなデータストリームに適しています。
論文 参考訳(メタデータ) (2023-03-28T21:02:35Z) - Towards Realistic Low-resource Relation Extraction: A Benchmark with
Empirical Baseline Study [51.33182775762785]
本稿では,低リソース環境下での関係抽出システムを構築するための実証的研究について述べる。
低リソース環境での性能を評価するための3つのスキームについて検討する。 (i) ラベル付きラベル付きデータを用いた異なるタイプのプロンプトベース手法、 (ii) 長期分布問題に対処する多様なバランシング手法、 (iii) ラベル付きインドメインデータを生成するためのデータ拡張技術と自己学習。
論文 参考訳(メタデータ) (2022-10-19T15:46:37Z) - Uncertainty in Contrastive Learning: On the Predictability of Downstream
Performance [7.411571833582691]
このような表現の不確実性は、単一のデータポイントに対して有意義な方法で定量化できるかどうかを考察する。
埋め込み空間におけるトレーニングデータの分布を直接推定することにより,この目標を達成することができることを示す。
論文 参考訳(メタデータ) (2022-07-19T15:44:59Z) - Robust Flow-based Conformal Inference (FCI) with Statistical Guarantee [4.821312633849745]
本研究では,予測集合の構築や,複雑なデータや高次元データに対するアウトレイラの推測など,一連の共形推論手法を開発する。
ベンチマークデータセットを用いて,ロバストなフローベース共形推論手法の評価を行った。
論文 参考訳(メタデータ) (2022-05-22T04:17:30Z) - TRUE: Re-evaluating Factual Consistency Evaluation [29.888885917330327]
TRUE: 多様なタスクから既存のテキストの標準化されたコレクション上での、事実整合性メトリクスの総合的な研究である。
我々の標準化により、前述した相関よりも動作可能で解釈可能なサンプルレベルのメタ評価プロトコルが実現される。
さまざまな最先端のメトリクスと11のデータセットから、大規模NLIと質問生成と回答に基づくアプローチが、強力で相補的な結果をもたらすことが分かりました。
論文 参考訳(メタデータ) (2022-04-11T10:14:35Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
そこで我々は,PAC-Bayesリスク認定パラダイム内で,グラフ上のメトリックデータを分類するための新しい深層予測器のクラスを提案する。
PAC-Bayesの最近の文献とデータに依存した先行研究に基づいて、この手法は仮説空間上の後続分布の学習を可能にする。
論文 参考訳(メタデータ) (2022-01-26T19:59:14Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Distributionally Robust Local Non-parametric Conditional Estimation [22.423052432220235]
非パラメトリックな局所推定を生成する分布安定な新しい推定器を提案する。
一般には難解であるにもかかわらず、局所推定器は凸最適化によって効率的に見つけることができることを示す。
合成およびMNISTデータセットを用いた実験は、この新しいクラスの推定器の競合性能を示している。
論文 参考訳(メタデータ) (2020-10-12T00:11:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。