論文の概要: BSM loss: A superior way in modeling aleatory uncertainty of
fine_grained classification
- arxiv url: http://arxiv.org/abs/2206.04479v1
- Date: Thu, 9 Jun 2022 13:06:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-10 20:51:45.981525
- Title: BSM loss: A superior way in modeling aleatory uncertainty of
fine_grained classification
- Title(参考訳): BSM損失:細粒度分類の不確かさのモデル化における優れた方法
- Authors: Shuang Ge, Kehong Yuan, Maokun Han, Desheng Sun, Huabin Zhang, Qiongyu
Ye
- Abstract要約: 混合データ拡張戦略を用いた改良型ブートストラップ損失(BS損失)関数を提案する。
実験の結果,Mixup(BSM)モデルによるBS損失は,標準データ拡張と比較して予測誤差(ECE)を半減できることがわかった。
BSMモデルはドメイン外のデータのセマンティックな距離を知覚することができ、実際の臨床実践において高い可能性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence(AI)-assisted method had received much attention in
the risk field such as disease diagnosis. Different from the classification of
disease types, it is a fine-grained task to classify the medical images as
benign or malignant. However, most research only focuses on improving the
diagnostic accuracy and ignores the evaluation of model reliability, which
limits its clinical application. For clinical practice, calibration presents
major challenges in the low-data regime extremely for over-parametrized models
and inherent noises. In particular, we discovered that modeling data-dependent
uncertainty is more conducive to confidence calibrations. Compared with
test-time augmentation(TTA), we proposed a modified Bootstrapping loss(BS loss)
function with Mixup data augmentation strategy that can better calibrate
predictive uncertainty and capture data distribution transformation without
additional inference time. Our experiments indicated that BS loss with
Mixup(BSM) model can halve the Expected Calibration Error(ECE) compared to
standard data augmentation, deep ensemble and MC dropout. The correlation
between uncertainty and similarity of in-domain data is up to -0.4428 under the
BSM model. Additionally, the BSM model is able to perceive the semantic
distance of out-of-domain data, demonstrating high potential in real-world
clinical practice.
- Abstract(参考訳): 人工知能(AI)支援法は, 疾患診断などの危険分野において注目されている。
疾患の分類とは違って、医療画像の良性や悪性の分類はきめ細かな作業である。
しかし、ほとんどの研究は診断精度の向上にのみ焦点を合わせ、その臨床応用を制限するモデル信頼性の評価を無視している。
臨床実践では、過度にパラメータ化されたモデルと固有のノイズに対して、低データ体制における大きな課題が提示される。
特にデータ依存の不確かさのモデル化は、信頼性のキャリブレーションにもっと寄与することがわかった。
テスト時間拡張(tta)と比較して,予測の不確かさを校正し,追加の推論時間なしでデータ分布変換をキャプチャできるミックスアップデータ拡張戦略を備えた,bootstrapping loss(bs loss)関数の改良を提案した。
実験の結果,Mixup(BSM)モデルによるBS損失は,標準データ増大,ディープアンサンブル,MCドロップアウトと比較して,期待されるキャリブレーション誤差(ECE)を半減できることがわかった。
ドメイン内データの不確実性と類似性の相関は、bsmモデルで最大-0.4428である。
さらに、BSMモデルはドメイン外のデータのセマンティックな距離を知覚することができ、実際の臨床実践において高い可能性を示す。
関連論文リスト
- Achieving Well-Informed Decision-Making in Drug Discovery: A Comprehensive Calibration Study using Neural Network-Based Structure-Activity Models [4.619907534483781]
薬物と標的の相互作用を予測する計算モデルは、新しい治療薬の開発を加速するための貴重なツールである。
しかし、そのようなモデルはキャリブレーションが不十分であり、信頼性の低い不確実性推定をもたらす。
本研究では,ポストホックキャリブレーション法と不確実な定量化手法を組み合わせることで,モデルの精度とキャリブレーションを向上できることを示す。
論文 参考訳(メタデータ) (2024-07-19T10:29:00Z) - Neural parameter calibration and uncertainty quantification for epidemic
forecasting [0.0]
感染パラメータの確率密度を学習する問題に対して,新しい強力な計算手法を適用した。
ニューラルネットワークを用いて、2020年にベルリンで発生した新型コロナウイルスの感染拡大に関するデータにODEモデルを調整します。
本手法は,感染の簡易SIRモデルにおいて,本手法の真の後部への収束を示すとともに,縮小データセット上での学習能力を実証する。
論文 参考訳(メタデータ) (2023-12-05T21:34:59Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Density-Aware Personalized Training for Risk Prediction in Imbalanced
Medical Data [89.79617468457393]
不均衡率(クラス密度差)のトレーニングモデルは、最適以下の予測につながる可能性がある。
この不均衡問題に対するモデルトレーニングのためのフレームワークを提案する。
実世界の医療データセットにおけるモデルの性能向上を実証する。
論文 参考訳(メタデータ) (2022-07-23T00:39:53Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
統計的に厳密な不確実性定量化の欠如は、AI結果の信頼を損なう重要な要因である。
分布自由不確実性定量化の最近の進歩は、これらの問題に対する実用的な解決策である。
本稿では, 正しい狭窄の重症度を含むことが保証される順序予測セットを形成する手法を実証する。
論文 参考訳(メタデータ) (2022-07-05T18:01:20Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - The unreasonable effectiveness of Batch-Norm statistics in addressing
catastrophic forgetting across medical institutions [8.244654685687054]
モデル改良と事前学習した知識の保持のトレードオフについて検討する。
本稿では,従来のデータセットのグローバルバッチ正規化統計値を用いて,弾性重み付け(EWC)を適応する,単純で効果的な手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T16:57:05Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。