論文の概要: Efficient Epistemic Uncertainty Estimation in Cerebrovascular Segmentation
- arxiv url: http://arxiv.org/abs/2503.22271v1
- Date: Fri, 28 Mar 2025 09:39:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:31:22.373868
- Title: Efficient Epistemic Uncertainty Estimation in Cerebrovascular Segmentation
- Title(参考訳): 脳血管解離における高能率てんかん不確実性評価
- Authors: Omini Rathore, Richard Paul, Abigail Morrison, Hanno Scharr, Elisabeth Pfaehler,
- Abstract要約: ベイズ近似とディープアンサンブルの利点を組み合わせた効率的なアンサンブルモデルを提案する。
高モデル不確実性と誤予測の領域は一致しており、このアプローチの有効性と信頼性を示している。
- 参考スコア(独自算出の注目度): 1.3980986259786223
- License:
- Abstract: Brain vessel segmentation of MR scans is a critical step in the diagnosis of cerebrovascular diseases. Due to the fine vessel structure, manual vessel segmentation is time consuming. Therefore, automatic deep learning (DL) based segmentation techniques are intensively investigated. As conventional DL models yield a high complexity and lack an indication of decision reliability, they are often considered as not trustworthy. This work aims to increase trust in DL based models by incorporating epistemic uncertainty quantification into cerebrovascular segmentation models for the first time. By implementing an efficient ensemble model combining the advantages of Bayesian Approximation and Deep Ensembles, we aim to overcome the high computational costs of conventional probabilistic networks. Areas of high model uncertainty and erroneous predictions are aligned which demonstrates the effectiveness and reliability of the approach. We perform extensive experiments applying the ensemble model on out-of-distribution (OOD) data. We demonstrate that for OOD-images, the estimated uncertainty increases. Additionally, omitting highly uncertain areas improves the segmentation quality, both for in- and out-of-distribution data. The ensemble model explains its limitations in a reliable manner and can maintain trustworthiness also for OOD data and could be considered in clinical applications
- Abstract(参考訳): MRスキャンの脳血管セグメンテーションは脳血管疾患の診断における重要なステップである。
細い船体構造のため、手動の船体セグメンテーションには時間がかかる。
そこで, 自動深層学習(DL)に基づくセグメンテーション技術について検討した。
従来のDLモデルは複雑さが高く、意思決定の信頼性の指標が欠如しているため、信頼できないものと見なされることが多い。
本研究は,脳血管セグメンテーションモデルにててんかん不確実性定量化を組み込むことにより,DLモデルに対する信頼性を高めることを目的とする。
ベイズ近似とディープアンサンブルの利点を組み合わせた効率的なアンサンブルモデルを実装することにより,従来の確率的ネットワークの計算コストの増大を克服することを目指す。
高モデル不確実性と誤予測の領域は一致しており、このアプローチの有効性と信頼性を示している。
分布外(OOD)データにアンサンブルモデルを適用した広範囲な実験を行う。
OOD画像では, 推定不確かさが増大することを示した。
さらに、極めて不確実な領域を省略することで、イン・オブ・アウト・ディストリビューション・データの両方においてセグメンテーションの品質が向上する。
アンサンブルモデルは、その限界を信頼できる方法で説明し、OODデータにも信頼性を維持し、臨床応用として考慮できる。
関連論文リスト
- Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - Inadequacy of common stochastic neural networks for reliable clinical
decision support [0.4262974002462632]
医療意思決定におけるAIの普及は、倫理的および安全性に関する懸念から、いまだに妨げられている。
しかし、一般的なディープラーニングアプローチは、データシフトによる過信傾向にある。
本研究は臨床応用における信頼性について考察する。
論文 参考訳(メタデータ) (2024-01-24T18:49:30Z) - Benchmarking Scalable Epistemic Uncertainty Quantification in Organ
Segmentation [7.313010190714819]
モデル予測に関連する不確実性の定量化は 重要な臨床応用に不可欠です
自動臓器分割のためのディープラーニングに基づく手法は,診断と治療計画を支援する上で有望であることを示す。
医用画像解析設定においてどの方法が好ましいかは不明確である。
論文 参考訳(メタデータ) (2023-08-15T00:09:33Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Region-Based Evidential Deep Learning to Quantify Uncertainty and
Improve Robustness of Brain Tumor Segmentation [14.76728117630242]
不確実性推定はこの問題の効率的な解決法である。
現在の不確実性推定法はその計算コストと矛盾性によって制限される。
本研究では、信頼性の高い不確実性マップとロバストなセグメンテーション結果を生成することができる地域ベースのEDLフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-11T21:04:15Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
本稿では,セグメンテーションニューラルネットワークにおける不確実性定量化のための新しいベイズディープラーニングフレームワークを提案する。
我々は磁気共鳴イメージングとCTによる医用画像分割データについて検討した。
複数のベンチマークデータセットに対する実験により,提案するフレームワークは,最先端セグメンテーションモデルと比較して,ノイズや敵攻撃に対してより堅牢であることが示された。
論文 参考訳(メタデータ) (2021-11-10T22:46:05Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
決定論的不確実性法(DUM)は,分布外データの検出において高い性能を達成する。
DUMが十分に校正されており、現実のアプリケーションにシームレスにスケールできるかどうかは不明だ。
論文 参考訳(メタデータ) (2021-07-01T17:59:07Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。