論文の概要: Taxonomy of Benchmarks in Graph Representation Learning
- arxiv url: http://arxiv.org/abs/2206.07729v1
- Date: Wed, 15 Jun 2022 18:01:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-17 15:52:43.125053
- Title: Taxonomy of Benchmarks in Graph Representation Learning
- Title(参考訳): グラフ表現学習におけるベンチマークの分類
- Authors: Renming Liu, Semih Cant\"urk, Frederik Wenkel, Dylan Sandfelder, Devin
Kreuzer, Anna Little, Sarah McGuire, Leslie O'Bray, Michael Perlmutter,
Bastian Rieck, Matthew Hirn, Guy Wolf, Ladislav Ramp\'a\v{s}ek
- Abstract要約: グラフニューラルネットワーク(GNN)は、その固有の幾何学を考慮し、ニューラルネットワークの成功をグラフ構造化データに拡張する。
現在、グラフ表現学習ベンチマークによって、与えられたモデルのどの側面が調査されているかはよく分かっていない。
本稿では,グラフの摂動によってGNNの性能がどれだけ変化するかに基づいて,$textitsensitivity profile$に従ってベンチマークデータセットを分類する手法を開発した。
- 参考スコア(独自算出の注目度): 14.358071994798964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) extend the success of neural networks to
graph-structured data by accounting for their intrinsic geometry. While
extensive research has been done on developing GNN models with superior
performance according to a collection of graph representation learning
benchmarks, it is currently not well understood what aspects of a given model
are probed by them. For example, to what extent do they test the ability of a
model to leverage graph structure vs. node features? Here, we develop a
principled approach to taxonomize benchmarking datasets according to a
$\textit{sensitivity profile}$ that is based on how much GNN performance
changes due to a collection of graph perturbations. Our data-driven analysis
provides a deeper understanding of which benchmarking data characteristics are
leveraged by GNNs. Consequently, our taxonomy can aid in selection and
development of adequate graph benchmarks, and better informed evaluation of
future GNN methods. Finally, our approach and implementation in
$\texttt{GTaxoGym}$ package are extendable to multiple graph prediction task
types and future datasets.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、その固有の幾何学を考慮し、ニューラルネットワークの成功をグラフ構造化データに拡張する。
グラフ表現学習ベンチマークの収集により、優れた性能を持つGNNモデルの開発について広範な研究がなされているが、現在、与えられたモデルのどの側面が調査されているかはよく分かっていない。
例えば、グラフ構造とnode機能を利用するモデルの能力は、どの程度テストされているか?
本稿では,グラフの摂動によるGNNの性能変化量に基づいて,ベンチマークデータセットを$\textit{sensitivity profile}$に従って分類する手法を開発した。
我々のデータ駆動分析は、GNNがどのベンチマークデータ特性を利用するかをより深く理解する。
その結果,本分類は,適切なグラフベンチマークの選択と開発,および今後のgnn手法のより良いインフォームド評価を支援することができる。
最後に、$\texttt{gtaxogym}$ packageのアプローチと実装は、複数のグラフ予測タスクタイプと将来のデータセットに拡張可能です。
関連論文リスト
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - Graph Property Prediction on Open Graph Benchmark: A Winning Solution by
Graph Neural Architecture Search [37.89305885538052]
PAS(Pooling Architecture Search)を導入してグラフ分類タスクのためのグラフニューラルネットワークフレームワークを設計する。
本稿では,GNNトポロジ設計手法であるF2GNNに基づいて改良を行い,グラフ特性予測タスクにおけるモデルの性能をさらに向上させる。
NAS法は,複数のタスクに対して高い一般化能力を有し,グラフ特性予測タスクの処理における本手法の利点が証明された。
論文 参考訳(メタデータ) (2022-07-13T08:17:48Z) - Attention-Based Recommendation On Graphs [9.558392439655012]
グラフニューラルネットワーク(GNN)は、さまざまなタスクで顕著なパフォーマンスを示している。
本研究では,モデルベースレコメンデータシステムとしてGARecを提案する。
提案手法は,既存のモデルベース非グラフニューラルネットワークとグラフニューラルネットワークを異なるMovieLensデータセットで比較した。
論文 参考訳(メタデータ) (2022-01-04T21:02:02Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - Towards a Taxonomy of Graph Learning Datasets [10.151886932716518]
グラフニューラルネットワーク(GNN)は、基礎となるデータの固有のジオメトリを活用する能力によって、多くの注目を集めている。
本稿では,グラフ摂動の集合を慎重に設計することで,グラフベンチマークデータセットを分類する手法を提案する。
データ駆動によるグラフデータセットの分類は、重要なデータセット特性の新たな理解を提供する。
論文 参考訳(メタデータ) (2021-10-27T23:08:01Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。