論文の概要: ck-means, a novel unsupervised learning method that combines fuzzy and
crispy clustering methods to extract intersecting data
- arxiv url: http://arxiv.org/abs/2206.08982v1
- Date: Fri, 17 Jun 2022 19:29:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-22 17:35:05.983355
- Title: ck-means, a novel unsupervised learning method that combines fuzzy and
crispy clustering methods to extract intersecting data
- Title(参考訳): ファジィとクリッピークラスタリングを組み合わせた新しい教師なし学習手法ck-means
- Authors: Jean-S\'ebastien Dessureault and Daniel Massicotte
- Abstract要約: 本稿では,2つの特徴以上の共通点を共有するデータをクラスタリングする手法を提案する。
この手法の主な考え方は、ファジィ C-Means (FCM) アルゴリズムを用いてファジィクラスタを生成することである。
このアルゴリズムはまた、シルエット指数(SI)によって与えられるクラスタの一貫性に従って、FCMとk平均アルゴリズムのための最適なクラスタ数を見つけることができる。
- 参考スコア(独自算出の注目度): 1.827510863075184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering data is a popular feature in the field of unsupervised machine
learning. Most algorithms aim to find the best method to extract consistent
clusters of data, but very few of them intend to cluster data that share the
same intersections between two features or more. This paper proposes a method
to do so. The main idea of this novel method is to generate fuzzy clusters of
data using a Fuzzy C-Means (FCM) algorithm. The second part involves applying a
filter that selects a range of minimum and maximum membership values,
emphasizing the border data. A {\mu} parameter defines the amplitude of this
range. It finally applies a k-means algorithm using the membership values
generated by the FCM. Naturally, the data having similar membership values will
regroup in a new crispy cluster. The algorithm is also able to find the optimal
number of clusters for the FCM and the k-means algorithm, according to the
consistency of the clusters given by the Silhouette Index (SI). The result is a
list of data and clusters that regroup data sharing the same intersection,
intersecting two features or more. ck-means allows extracting the very similar
data that does not naturally fall in the same cluster but at the intersection
of two clusters or more. The algorithm also always finds itself the optimal
number of clusters.
- Abstract(参考訳): クラスタリングデータは教師なし機械学習の分野で人気のある機能である。
ほとんどのアルゴリズムは、一貫性のあるデータのクラスタを抽出する最善の方法を見つけることを目標としているが、2つ以上の機能間で同じ交差点を共有するデータをクラスタ化する意図を持つものはほとんどない。
本稿では,その方法を提案する。
この手法の主な考え方は、ファジィ C-Means (FCM) アルゴリズムを用いてファジィクラスタを生成することである。
第2部では、境界データを強調して、最小および最大メンバーシップ値の範囲を選択するフィルタを適用する。
パラメータは、この範囲の振幅を定義する。
最終的に、FCMによって生成されるメンバシップ値を用いてk-meansアルゴリズムを適用する。
当然、同じメンバーシップ値を持つデータは、新しいcrispyクラスタに再グループ化される。
このアルゴリズムはまた、シルエット指数(SI)によって与えられるクラスタの一貫性に従って、FCMとk平均アルゴリズムの最適なクラスタ数を見つけることができる。
その結果はデータとクラスタのリストであり、同じ交差点を共有するデータを再グループ化し、2つ以上の機能と交差する。
ck-meansは、同じクラスタに自然に落ちるのではなく、2つ以上のクラスタの交差点で、非常に類似したデータを抽出することができる。
このアルゴリズムは、常に最適なクラスタ数を見つける。
関連論文リスト
- Linear time Evidence Accumulation Clustering with KMeans [0.0]
この研究は、平均的なリンククラスタリングの振る舞いを模倣するトリックを記述する。
分割の密度を効率よく計算する方法を見つけ、二次的な複雑さから線形的な複雑さへのコストを削減した。
k平均結果は、計算コストを低く保ちながら、NMIの観点からは、最先端の技術に匹敵する。
論文 参考訳(メタデータ) (2023-11-15T14:12:59Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - Hybrid Fuzzy-Crisp Clustering Algorithm: Theory and Experiments [0.0]
本稿では,対象関数の線形項と2次項を組み合わせたファジィクロップクラスタリングアルゴリズムを提案する。
このアルゴリズムでは、クラスタへのデータポイントのメンバシップが、クラスタセンタから十分に離れていれば、自動的に正確にゼロに設定される。
提案アルゴリズムは、不均衡なデータセットの従来の手法よりも優れており、よりバランスの取れたデータセットと競合することができる。
論文 参考訳(メタデータ) (2023-03-25T05:27:26Z) - An enhanced method of initial cluster center selection for K-means
algorithm [0.0]
K-meansアルゴリズムの初期クラスタ選択を改善するための新しい手法を提案する。
Convex Hullアルゴリズムは、最初の2つのセントロイドの計算を容易にし、残りの2つは、以前選択された中心からの距離に応じて選択される。
We obtained only 7.33%, 7.90%, and 0% clustering error in Iris, Letter, and Ruspini data。
論文 参考訳(メタデータ) (2022-10-18T00:58:50Z) - K-Splits: Improved K-Means Clustering Algorithm to Automatically Detect
the Number of Clusters [0.12313056815753944]
本稿では,k-meansに基づく改良された階層型アルゴリズムであるk-splitsを紹介する。
提案手法の主な利点は,精度と速度である。
論文 参考訳(メタデータ) (2021-10-09T23:02:57Z) - Robust Trimmed k-means [70.88503833248159]
本稿では,外乱点とクラスタポイントを同時に識別するRobust Trimmed k-means (RTKM)を提案する。
RTKMは他の方法と競合することを示す。
論文 参考訳(メタデータ) (2021-08-16T15:49:40Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Probabilistic Partitive Partitioning (PPP) [0.0]
クラスタリングアルゴリズムは一般に2つの一般的な問題に直面している。
彼らは異なる初期条件で異なる設定に収束する。
クラスタの数は、事前に任意に決めなければならない。
論文 参考訳(メタデータ) (2020-03-09T19:18:35Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。