Large-scale cluster quantum microcombs
- URL: http://arxiv.org/abs/2406.10715v2
- Date: Mon, 16 Dec 2024 16:05:23 GMT
- Title: Large-scale cluster quantum microcombs
- Authors: Ze Wang, Kangkang Li, Yue Wang, Xin Zhou, Yinke Cheng, Boxuan Jing, Fengxiao Sun, Jincheng Li, Zhilin Li, Bingyan Wu, Qihuang Gong, Qiongyi He, Bei-Bei Li, Qi-Fan Yang,
- Abstract summary: Cluster quantum microcombs are generated within an on-chip optical microresonator driven by multi-frequency lasers.
We show the largest-scale cluster states with unprecedented raw squeezing levels from a photonic chip.
- Score: 13.91765269590981
- License:
- Abstract: An optical frequency comb comprises a cluster of equally spaced, phase-locked spectral lines. Replacing these classical components with correlated quantum light gives rise to cluster quantum frequency combs, providing abundant quantum resources for measurement-based quantum computation and multi-user quantum networks. We propose and generate cluster quantum microcombs within an on-chip optical microresonator driven by multi-frequency lasers. Through resonantly enhanced four-wave mixing processes, continuous-variable cluster states with 60 qumodes are deterministically created. The graph structures can be programmed into one- and two-dimensional lattices by adjusting the configurations of the pump lines, which are confirmed inseparable based on the measured covariance matrices. Our work demonstrates the largest-scale cluster states with unprecedented raw squeezing levels from a photonic chip, offering a compact and scalable platform for computational and communicational tasks with quantum advantages.
Related papers
- Multipartite entanglement generation in coupled microcavity arrays [0.0]
We consider photonic arrays made from quantum emitters in optically coupled microcavities as a platform for entanglement generation.
These offer a large degree of tunability with the possibility of site-selective optical excitation.
arXiv Detail & Related papers (2022-11-24T14:40:38Z) - Deterministic Generation of Multidimensional Photonic Cluster States
with a Single Quantum Emitter [1.2233362977312945]
We present an experimental implementation in the microwave domain of a resource-efficient scheme for the deterministic generation of 2D photonic cluster states.
By utilizing a coupled resonator array as a slow-light waveguide, a single flux-tunable transmon qubit as a quantum emitter, and a second auxiliary transmon as a switchable mirror, we achieve rapid, shaped emission of entangled photon wavepackets.
We leverage these capabilities to generate a 2D cluster state of four photons with 70% fidelity, as verified by tomographic reconstruction of the quantum state.
arXiv Detail & Related papers (2022-06-21T02:08:18Z) - On-chip distribution of quantum information using traveling phonons [0.0]
We experimentally demonstrate the feasibility of distributing quantum information using phonons.
We show how the phononic, together with a photonic qubit, can be used to violate a Bell-type inequality.
arXiv Detail & Related papers (2022-04-11T13:08:23Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - A squeezed quantum microcomb on a chip [0.0]
We demonstrate a deterministic quantum microcomb in a silica microresonator on a silicon chip.
A high-resolution spectroscopy measurement is developed to characterize the frequency equidistance of quantum microcombs.
arXiv Detail & Related papers (2021-03-04T23:13:02Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Deterministic multi-mode gates on a scalable photonic quantum computing
platform [0.0]
We show a small quantum circuit consisting of 10 single-mode gates and 2 two-mode gates on a three-mode input state.
On this platform, fault-tolerant universal quantum computing is possible if the cluster state entanglement is improved.
arXiv Detail & Related papers (2020-10-27T16:37:59Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.