論文の概要: HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and
Sensing
- arxiv url: http://arxiv.org/abs/2110.10324v4
- Date: Tue, 28 Mar 2023 19:03:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 19:19:29.520330
- Title: HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and
Sensing
- Title(参考訳): HARPS:人間支援ロボット計画とセンシングのためのオンラインPOMDPフレームワーク
- Authors: Luke Burks, Hunter M. Ray, Jamison McGinley, Sousheel Vunnam, and
Nisar Ahmed
- Abstract要約: HARPS(Human Assisted Robotic Planning and Sensing)フレームワークは、ロボットチームにおけるアクティブなセマンティックセンシングと計画のためのフレームワークである。
このアプローチにより、人間が不規則にモデル構造を強制し、不確実な環境で意味的なソフトデータの範囲を拡張することができる。
大規模部分構造環境におけるUAV対応ターゲット探索アプリケーションのシミュレーションは、時間と信念状態の推定において著しく改善されている。
- 参考スコア(独自算出の注目度): 1.3678064890824186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous robots can benefit greatly from human-provided semantic
characterizations of uncertain task environments and states. However, the
development of integrated strategies which let robots model, communicate, and
act on such 'soft data' remains challenging. Here, the Human Assisted Robotic
Planning and Sensing (HARPS) framework is presented for active semantic sensing
and planning in human-robot teams to address these gaps by formally combining
the benefits of online sampling-based POMDP policies, multimodal semantic
interaction, and Bayesian data fusion. This approach lets humans
opportunistically impose model structure and extend the range of semantic soft
data in uncertain environments by sketching and labeling arbitrary landmarks
across the environment. Dynamic updating of the environment model while during
search allows robotic agents to actively query humans for novel and relevant
semantic data, thereby improving beliefs of unknown environments and states for
improved online planning. Simulations of a UAV-enabled target search
application in a large-scale partially structured environment show significant
improvements in time and belief state estimates required for interception
versus conventional planning based solely on robotic sensing. Human subject
studies in the same environment (n = 36) demonstrate an average doubling in
dynamic target capture rate compared to the lone robot case, and highlight the
robustness of active probabilistic reasoning and semantic sensing over a range
of user characteristics and interaction modalities.
- Abstract(参考訳): 自律ロボットは、不確実なタスク環境や状態の人間が提供するセマンティックな特徴から大きな恩恵を受けることができる。
しかし,ロボットがこのような「ソフトデータ」をモデル化し,伝達し,動作させることができる統合戦略の開発はいまだに困難である。
そこで,HARPS(Human Assisted Robotic Planning and Sensing)フレームワークは,オンラインサンプリングベースのPOMDPポリシ,マルチモーダルセマンティックインタラクション,ベイズデータ融合のメリットを正式に組み合わせることで,ロボットチームにおけるアクティブなセマンティックセンシングとプランニングを実現する。
このアプローチは、人間が任意のランドマークをスケッチし、ラベリングすることで、不確定な環境でモデル構造を付加し、セマンティックなソフトデータの範囲を拡張できる。
探索中の環境モデルの動的更新により、ロボットエージェントは人間に新しい意味的データを積極的にクエリし、未知の環境や状態の信念を改善し、オンライン計画を改善することができる。
大規模部分構造環境におけるuav対応目標探索アプリケーションのシミュレーションは、ロボットセンシングのみに基づく従来の計画に比べて、インターセプションに必要な時間と信念状態の推定が大幅に改善している。
同じ環境(n = 36)における人間の被験者研究は、単独のロボットの場合と比較して、動的目標捕捉率の平均倍率を示し、ユーザ特性やインタラクションのモダリティを越えて、アクティブな確率的推論とセマンティックセンシングの堅牢性を強調している。
関連論文リスト
- Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [55.65482030032804]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
提案手法は,軌道予測器が将来の状態を生成するために使用する関係の進化を捉えるために,動的に進化する関係グラフとハイパーグラフを推論する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - Semi-Supervised Active Learning for Semantic Segmentation in Unknown
Environments Using Informative Path Planning [27.460481202195012]
ロボットの視力を改善するために、自己監督的で完全に教師された能動学習手法が出現した。
セマンティックセグメンテーションの半教師付き能動学習のための計画法を提案する。
我々は、モデル不確実性の高い未探索空間のフロンティアに向けて導かれた適応地図ベースのプランナーを活用する。
論文 参考訳(メタデータ) (2023-12-07T16:16:47Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T07:49:48Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - Few-Shot Visual Grounding for Natural Human-Robot Interaction [0.0]
本稿では,人間ユーザによって音声で示される,混み合ったシーンから対象物を分割するソフトウェアアーキテクチャを提案する。
システムのコアでは、視覚的な接地のためにマルチモーダルディープニューラルネットワークを使用します。
公開シーンデータセットから収集した実RGB-Dデータに対して,提案モデルの性能を評価する。
論文 参考訳(メタデータ) (2021-03-17T15:24:02Z) - Leveraging Neural Network Gradients within Trajectory Optimization for
Proactive Human-Robot Interactions [32.57882479132015]
本稿では, トラジェクトリ最適化(TO)の解釈可能性と柔軟性を, 最先端の人間のトラジェクトリ予測モデルの予測能力と融合する枠組みを提案する。
我々は,最大10人の歩行者の群集を安全に効率的に移動させるロボットを必要とするマルチエージェントシナリオにおいて,我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-12-02T08:43:36Z) - Multimodal Deep Generative Models for Trajectory Prediction: A
Conditional Variational Autoencoder Approach [34.70843462687529]
本研究では,人間の行動予測に対する条件付き変分オートエンコーダアプローチに関する自己完結型チュートリアルを提供する。
本チュートリアルの目的は,人間の行動予測における最先端の手法の分類をレビューし,構築することである。
論文 参考訳(メタデータ) (2020-08-10T03:18:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。