論文の概要: Semi-Supervised Active Learning for Semantic Segmentation in Unknown
Environments Using Informative Path Planning
- arxiv url: http://arxiv.org/abs/2312.04402v3
- Date: Fri, 26 Jan 2024 10:32:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-29 12:27:26.155179
- Title: Semi-Supervised Active Learning for Semantic Segmentation in Unknown
Environments Using Informative Path Planning
- Title(参考訳): 情報経路計画を用いた未知環境における意味セグメンテーションのための半教師付きアクティブラーニング
- Authors: Julius R\"uckin, Federico Magistri, Cyrill Stachniss, Marija Popovi\'c
- Abstract要約: ロボットの視力を改善するために、自己監督的で完全に教師された能動学習手法が出現した。
セマンティックセグメンテーションの半教師付き能動学習のための計画法を提案する。
我々は、モデル不確実性の高い未探索空間のフロンティアに向けて導かれた適応地図ベースのプランナーを活用する。
- 参考スコア(独自算出の注目度): 27.460481202195012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic segmentation enables robots to perceive and reason about their
environments beyond geometry. Most of such systems build upon deep learning
approaches. As autonomous robots are commonly deployed in initially unknown
environments, pre-training on static datasets cannot always capture the variety
of domains and limits the robot's perception performance during missions.
Recently, self-supervised and fully supervised active learning methods emerged
to improve a robot's vision. These approaches rely on large in-domain
pre-training datasets or require substantial human labelling effort. We propose
a planning method for semi-supervised active learning of semantic segmentation
that substantially reduces human labelling requirements compared to fully
supervised approaches. We leverage an adaptive map-based planner guided towards
the frontiers of unexplored space with high model uncertainty collecting
training data for human labelling. A key aspect of our approach is to combine
the sparse high-quality human labels with pseudo labels automatically extracted
from highly certain environment map areas. Experimental results show that our
method reaches segmentation performance close to fully supervised approaches
with drastically reduced human labelling effort while outperforming
self-supervised approaches.
- Abstract(参考訳): セマンティックセグメンテーション(Semantic segmentation)は、ロボットが幾何学以外の環境を知覚し、推論することを可能にする。
このようなシステムのほとんどは、ディープラーニングのアプローチに基づいている。
自律ロボットは、当初未知の環境で一般的にデプロイされるため、静的データセットの事前トレーニングは、常にさまざまなドメインをキャプチャして、ミッション中のロボットの知覚性能を制限することはできない。
近年,ロボットの視力を向上させるために,自己指導的かつ完全に教師付きな能動学習手法が出現している。
これらのアプローチは、大規模なドメイン内事前トレーニングデータセットに依存している。
本稿では,完全教師付きアプローチと比較して,人間のラベル付け要件を大幅に削減する意味セグメンテーションの半教師付きアクティブラーニング計画法を提案する。
高モデル不確実性が人間のラベル付けのためのトレーニングデータを集めることで、未探索空間のフロンティアに向けて誘導される適応地図ベースのプランナーを活用する。
提案手法の主な特徴は, 環境マップ領域から自動的に抽出される擬似ラベルと, まばらな高品質なラベルを組み合わせることである。
実験の結果, 完全教師ありアプローチに近いセグメンテーション性能に到達し, 自己教師ありアプローチを上回って, 人間のラベル付け労力を大幅に削減した。
関連論文リスト
- AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
我々は,エージェントが訓練中に学習する抽象的な検索空間において,エージェントが計画することを可能にする,PiZeroと呼ばれる新しい手法を提案する。
本研究では,旅行セールスマン問題,ソコバン問題,2048年,施設立地問題,パックマン問題など,複数の分野で評価を行った。
論文 参考訳(メタデータ) (2023-08-16T22:47:16Z) - On Domain-Specific Pre-Training for Effective Semantic Perception in
Agricultural Robotics [30.966137924072097]
農業ロボットは、畑を監視し、植物と成長段階を自動で評価することを目的としている。
意味的知覚は、主に教師付きアプローチを用いた深層学習に依存している。
本稿では,最終セグメンテーション性能を損なうことなく,ラベルの量を削減する問題を考察する。
論文 参考訳(メタデータ) (2023-03-22T12:10:44Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
本研究では、不確実性モデリングと知識統合の駆動による自動運転の注意を予測できる教師なし手法を提案する。
結果は、完全に教師された最先端のアプローチと比較して、同等またはさらに印象的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-03-17T00:28:33Z) - A Semi-supervised Approach for Activity Recognition from Indoor
Trajectory Data [0.822021749810331]
協調生産環境において, 騒音の多い室内軌道データから移動物体の動作を分類する作業について検討する。
本稿では,まず情報理論の基準を適用し,長い軌道をセグメントに分割する半教師付き機械学習手法を提案する。
セグメントは制約付き階層的クラスタリング法に基づいて自動的にラベル付けされる。
論文 参考訳(メタデータ) (2023-01-09T01:20:50Z) - SCIM: Simultaneous Clustering, Inference, and Mapping for Open-World
Semantic Scene Understanding [34.19666841489646]
本研究では,ロボットが未知の環境を探索する際に,新しいセマンティッククラスを自律的に発見し,既知のクラスの精度を向上させる方法を示す。
セグメンテーションモデルを更新するための自己教師付き学習信号を生成するために,マッピングとクラスタリングのための一般的なフレームワークを開発する。
特に、デプロイ中にクラスタリングパラメータをどのように最適化するかを示し、複数の観測モダリティの融合が、以前の作業と比べて新しいオブジェクト発見を改善することを示す。
論文 参考訳(メタデータ) (2022-06-21T18:41:51Z) - HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and
Sensing [1.3678064890824186]
HARPS(Human Assisted Robotic Planning and Sensing)フレームワークは、ロボットチームにおけるアクティブなセマンティックセンシングと計画のためのフレームワークである。
このアプローチにより、人間が不規則にモデル構造を強制し、不確実な環境で意味的なソフトデータの範囲を拡張することができる。
大規模部分構造環境におけるUAV対応ターゲット探索アプリケーションのシミュレーションは、時間と信念状態の推定において著しく改善されている。
論文 参考訳(メタデータ) (2021-10-20T00:41:57Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
本稿では、教師なしクロスドメイン歩行認識のための領域ギャップを橋渡しするTransferable Neighborhood Discovery (TraND) フレームワークを提案する。
我々は、潜在空間におけるラベルなしサンプルの自信ある近傍を自動的に発見するために、エンドツーエンドのトレーニング可能なアプローチを設計する。
提案手法は,CASIA-BとOU-LPの2つの公開データセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-02-09T03:07:07Z) - Semi-supervised Gated Recurrent Neural Networks for Robotic Terrain
Classification [4.703075836560585]
私たちは、高機能な機械学習技術、すなわちゲート付きリカレントニューラルネットワークが、ターゲットの脚を持つロボットが、それが横断する地形を正しく分類することを可能にすることを示しています。
半教師付きモデルの分類結果を大幅に改善するために, 生の未ラベルデータがどのように使用されるかを示す。
論文 参考訳(メタデータ) (2020-11-24T06:25:19Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
本稿では,事前学習されたロボット知覚モデルの最終的な目的と協調して設計された感覚データのタスク関連表現を学習するアルゴリズムを提案する。
本アルゴリズムは,ロボットの知覚データを競合する手法の最大11倍まで積極的に圧縮する。
論文 参考訳(メタデータ) (2020-11-06T07:39:08Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。