論文の概要: HyGNN: Drug-Drug Interaction Prediction via Hypergraph Neural Network
- arxiv url: http://arxiv.org/abs/2206.12747v4
- Date: Tue, 18 Apr 2023 09:57:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 18:50:55.004865
- Title: HyGNN: Drug-Drug Interaction Prediction via Hypergraph Neural Network
- Title(参考訳): HyGNN:ハイパーグラフニューラルネットワークによる薬物と薬物の相互作用予測
- Authors: Khaled Mohammed Saifuddin, Briana Bumgardner, Farhan Tanvir, Esra
Akbas
- Abstract要約: 薬物と薬物の相互作用(DDI)は薬物の機能を妨げる可能性があり、最悪の場合、薬物の副作用(ADR)を引き起こす可能性がある。
本稿では,DDI予測問題に対するSMILES文字列のみに基づく新しいハイパーグラフニューラルネットワーク(HyGNN)モデルを提案する。
提案したHyGNNモデルは, DDIを効果的に予測し, ROC-AUCとPR-AUCを97.9%, 98.1%で比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drug-Drug Interactions (DDIs) may hamper the functionalities of drugs, and in
the worst scenario, they may lead to adverse drug reactions (ADRs). Predicting
all DDIs is a challenging and critical problem. Most existing computational
models integrate drug-centric information from different sources and leverage
them as features in machine learning classifiers to predict DDIs. However,
these models have a high chance of failure, especially for the new drugs when
all the information is not available. This paper proposes a novel Hypergraph
Neural Network (HyGNN) model based on only the SMILES string of drugs,
available for any drug, for the DDI prediction problem. To capture the drug
similarities, we create a hypergraph from drugs' chemical substructures
extracted from the SMILES strings. Then, we develop HyGNN consisting of a novel
attention-based hypergraph edge encoder to get the representation of drugs as
hyperedges and a decoder to predict the interactions between drug pairs.
Furthermore, we conduct extensive experiments to evaluate our model and compare
it with several state-of-the-art methods. Experimental results demonstrate that
our proposed HyGNN model effectively predicts DDIs and impressively outperforms
the baselines with a maximum ROC-AUC and PR-AUC of 97.9% and 98.1%,
respectively.
- Abstract(参考訳): 薬物・薬物相互作用(DDI)は薬物の機能を妨げる可能性があり、最悪の場合、薬物反応(ADR)を引き起こす可能性がある。
すべてのDDIを予測することは難しくて重要な問題です。
既存の計算モデルは、異なるソースからの薬物中心の情報を統合し、それらを機械学習分類器の機能として利用してDDIを予測する。
しかし、これらのモデルは、特に全ての情報が入手できない新しい薬物に対して、失敗の確率が高い。
本稿では,ddi予測問題に対して,薬剤のスマイル列のみに基づいた新しいハイパーグラフニューラルネットワーク(hygnn)モデルを提案する。
薬剤の類似性を捉えるため,SMILES文字列から抽出した薬物の化学的サブ構造からハイパーグラフを作成する。
そこで我々は,新しい注目に基づくハイパーグラフエッジエンコーダによるHyGNNを開発し,薬物をハイパーエッジとして表現し,薬物対間の相互作用を予測するデコーダを開発した。
さらに,本モデルを評価するための広範囲な実験を行い,いくつかの最先端手法と比較した。
実験の結果,提案したHyGNNモデルはDDIを効果的に予測し,最大ROC-AUCとPR-AUCを97.9%,98.1%で比較した。
関連論文リスト
- Learning to Describe for Predicting Zero-shot Drug-Drug Interactions [54.172575323610175]
薬物と薬物の相互作用は同時投与の有効性を損なう可能性がある。
従来のDDI予測の計算手法では、知識不足のため、新しい薬物の相互作用を捉えることができない可能性がある。
言語モデルに基づくDDI予測器と強化学習(RL)に基づく情報セレクタを用いたテキストDDIを提案する。
論文 参考訳(メタデータ) (2024-03-13T09:42:46Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
本稿では,新興医薬品の相互作用を効果的に予測できるグラフニューラルネットワーク(GNN)であるEmerGNNを提案する。
EmerGNNは、薬物ペア間の経路を抽出し、ある薬物から他の薬物へ情報を伝達し、関連する生物学的概念を経路に組み込むことで、薬物のペアワイズ表現を学習する。
全体として、EmerGNNは、新興薬物の相互作用を予測する既存のアプローチよりも精度が高く、バイオメディカルネットワーク上で最も関連性の高い情報を特定できる。
論文 参考訳(メタデータ) (2023-11-15T06:34:00Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm [0.521420263116111]
薬物相乗効果予測のためのグラフニューラルネットワーク(textitGNN)モデルを提案する。
従来のモデルとは対照的に、我々のGNNベースのアプローチは、薬物のグラフ構造から直接タスク特異的な薬物表現を学習する。
我々の研究は、タスク固有の薬物表現を学習し、多様なデータセットを活用することが、薬物と薬物の相互作用とシナジーの理解を深めるための有望なアプローチであることを示唆している。
論文 参考訳(メタデータ) (2022-10-03T10:16:29Z) - Molecular Substructure-Aware Network for Drug-Drug Interaction
Prediction [10.157966744159491]
薬物の併用投与は薬物と薬物の相互作用(DDI)を引き起こす
薬物対の分子構造から潜在的DDIを効果的に予測する新しいモデルである分子サブストラクチャー・アウェア・ネットワーク(MSAN)を提案する。
論文 参考訳(メタデータ) (2022-08-24T02:06:21Z) - DDI Prediction via Heterogeneous Graph Attention Networks [0.0]
ポリファーマシー(英: Poly Pharmacy)は、複数の薬物を併用すること。
薬物と薬物の相互作用 (DDI) は、ある薬物の作用が他の薬物と結合した場合に起こる活動である。
薬物と薬物の相互作用を予測するための新しい異種グラフアテンションモデルであるHAN-DDIを提案する。
論文 参考訳(メタデータ) (2022-07-12T16:59:06Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
DDI予測のための新しいマルチビュードラッグサブ構造ネットワーク(MSN-DDI)を提案する。
MSN-DDIは、単一の薬物(イントラビュー)と薬物ペア(インタービュー)の両方の表現から化学的サブ構造を同時に学習し、そのサブ構造を利用して、薬物表現を反復的に更新する。
総合的な評価では、MSN-DDIは、トランスダクティブ・セッティングの下で比較的改善された19.32%と99%以上の精度を達成することで、既存の薬物に対するDDI予測をほぼ解決したことを示している。
論文 参考訳(メタデータ) (2022-03-28T05:44:29Z) - SafeDrug: Dual Molecular Graph Encoders for Safe Drug Recommendations [59.590084937600764]
医薬品の分子構造とDDIのモデルを明確に活用するために、SafeDrugというDDI制御可能な薬物推奨モデルを提案する。
ベンチマークデータセットでは、SafeDrugはDDIを19.43%削減し、Jaccardの推奨薬物と実際に処方された薬物の組み合わせの2.88%を改善します。
論文 参考訳(メタデータ) (2021-05-05T00:20:48Z) - Drug-Drug Interaction Prediction with Wasserstein Adversarial
Autoencoder-based Knowledge Graph Embeddings [22.562175708415392]
薬物・薬物相互作用のための知識グラフ埋め込みフレームワークを提案する。
本フレームワークでは, 高品質な負のサンプルを生成するために, オートエンコーダを用いる。
判別器は、正三重項と負三重項の両方に基づいて薬物と相互作用の埋め込みを学習する。
論文 参考訳(メタデータ) (2020-04-15T21:03:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。