Learning Deep Input-Output Stable Dynamics
- URL: http://arxiv.org/abs/2206.13093v1
- Date: Mon, 27 Jun 2022 07:54:34 GMT
- Title: Learning Deep Input-Output Stable Dynamics
- Authors: Yuji Okamoto and Ryosuke Kojima
- Abstract summary: We propose a method to learn nonlinear systems guaranteeing the input-output stability.
Our proposed method utilizes the differentiable projection onto the space satisfying the Hamilton-Jacobi inequality.
Results show that the nonlinear system with neural networks by our method achieves the input-output stability, unlike naive neural networks.
- Score: 2.055949720959582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning stable dynamics from observed time-series data is an essential
problem in robotics, physical modeling, and systems biology. Many of these
dynamics are represented as an inputs-output system to communicate with the
external environment. In this study, we focus on input-output stable systems,
exhibiting robustness against unexpected stimuli and noise. We propose a method
to learn nonlinear systems guaranteeing the input-output stability. Our
proposed method utilizes the differentiable projection onto the space
satisfying the Hamilton-Jacobi inequality to realize the input-output
stability. The problem of finding this projection can be formulated as a
quadratic constraint quadratic programming problem, and we derive the
particular solution analytically. Also, we apply our method to a toy bistable
model and the task of training a benchmark generated from a glucose-insulin
simulator. The results show that the nonlinear system with neural networks by
our method achieves the input-output stability, unlike naive neural networks.
Our code is available at https://github.com/clinfo/DeepIOStability.
Related papers
- ICODE: Modeling Dynamical Systems with Extrinsic Input Information [14.521146920900316]
We introduce emph Input Concomitant Neural ODEs (ICODEs), which incorporate precise real-time input information into the learning process of the models.
We validate our method through experiments on several representative real dynamics.
This work offers a valuable class of neural ODE models for understanding physical systems with explicit external input information.
arXiv Detail & Related papers (2024-11-21T07:57:59Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Learning Deep Dissipative Dynamics [5.862431328401459]
Dissipativity is a crucial indicator for dynamical systems that generalizes stability and input-output stability.
We propose a differentiable projection that transforms any dynamics represented by neural networks into dissipative ones.
Our method strictly guarantees stability, input-output stability, and energy conservation of trained dynamical systems.
arXiv Detail & Related papers (2024-08-21T09:44:43Z) - Inference of Continuous Linear Systems from Data with Guaranteed
Stability [7.067529286680843]
This research focuses on learning continuous linear models from data.
We leverage the parameterization of stable matrices proposed in [Gillis/Sharma, Automatica, 2017] to realize the desired models.
To avoid the estimation of derivative information to learn continuous systems, we formulate the inference problem in an integral form.
arXiv Detail & Related papers (2023-01-24T15:04:19Z) - Learning Stabilizable Deep Dynamics Models [1.75320459412718]
We propose a new method for learning the dynamics of input-affine control systems.
An important feature is that a stabilizing controller and control Lyapunov function of the learned model are obtained as well.
The proposed method can also be applied to solving Hamilton-Jacobi inequalities.
arXiv Detail & Related papers (2022-03-18T03:09:24Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Enhancement of shock-capturing methods via machine learning [0.0]
We develop an improved finite-volume method for simulating PDEs with discontinuous solutions.
We train a neural network to improve the results of a fifth-order WENO method.
We find that our method outperforms WENO in simulations where the numerical solution becomes overly diffused.
arXiv Detail & Related papers (2020-02-06T21:51:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.