論文の概要: Measuring and Improving the Use of Graph Information in Graph Neural
Networks
- arxiv url: http://arxiv.org/abs/2206.13170v1
- Date: Mon, 27 Jun 2022 10:27:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 13:18:36.047646
- Title: Measuring and Improving the Use of Graph Information in Graph Neural
Networks
- Title(参考訳): グラフニューラルネットワークにおけるグラフ情報の利用の測定と改善
- Authors: Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard T. B. Ma,
Hongzhi Chen, Ming-Chang Yang
- Abstract要約: グラフニューラルネットワーク(GNN)は,グラフデータの表現学習に広く利用されている。
本稿では,グラフデータから得られる情報の量と質を測定するための2つのスムーズネス指標を提案する。
CS-GNNと呼ばれる新しいGNNモデルは、グラフの滑らかさ値に基づいてグラフ情報の利用を改善するように設計されている。
- 参考スコア(独自算出の注目度): 38.41049128525036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have been widely used for representation
learning on graph data. However, there is limited understanding on how much
performance GNNs actually gain from graph data. This paper introduces a
context-surrounding GNN framework and proposes two smoothness metrics to
measure the quantity and quality of information obtained from graph data. A new
GNN model, called CS-GNN, is then designed to improve the use of graph
information based on the smoothness values of a graph. CS-GNN is shown to
achieve better performance than existing methods in different types of real
graphs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は,グラフデータの表現学習に広く利用されている。
しかし、gnnがグラフデータから実際にどれだけのパフォーマンスを得るかについては、理解が限られている。
本稿では,グラフデータから得られる情報の量と質を測定するための2つのスムーズネス指標を提案する。
CS-GNNと呼ばれる新しいGNNモデルは、グラフの滑らかさ値に基づいてグラフ情報の利用を改善するように設計されている。
CS-GNNは実グラフの異なる種類の既存手法よりも優れた性能を示す。
関連論文リスト
- Graph Structure Prompt Learning: A Novel Methodology to Improve Performance of Graph Neural Networks [13.655670509818144]
グラフネットワーク(GNN)のトレーニングを強化するための新しいグラフ構造Prompt Learning法(GPL)を提案する。
GPLはタスク非依存のグラフ構造損失を利用して、GNNが下流タスクを同時に解決しながら固有のグラフ特性を学習することを奨励している。
11の実世界のデータセットの実験では、ニューラルネットワークによってトレーニングされた後、GNNはノード分類、グラフ分類、エッジタスクにおいて、元のパフォーマンスを大幅に上回った。
論文 参考訳(メタデータ) (2024-07-16T03:59:18Z) - Transferability of Graph Neural Networks using Graphon and Sampling Theories [0.0]
グラフニューラルネットワーク(GNN)は、さまざまなドメインでグラフベースの情報を処理するための強力なツールとなっている。
GNNの望ましい特性は転送可能性であり、トレーニングされたネットワークは、その正確性を再トレーニングすることなく、異なるグラフから情報を交換することができる。
我々は,2層グラファイトニューラルネットワーク(WNN)アーキテクチャを明示することにより,GNNへのグラファイトの適用に寄与する。
論文 参考訳(メタデータ) (2023-07-25T02:11:41Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - KerGNNs: Interpretable Graph Neural Networks with Graph Kernels [14.421535610157093]
グラフニューラルネットワーク(GNN)は、下流グラフ関連タスクにおける最先端の手法となっている。
我々は新しいGNNフレームワークKernel Graph Neural Networks(KerGNNs)を提案する。
KerGNNはグラフカーネルをGNNのメッセージパッシングプロセスに統合する。
提案手法は,既存の最先端手法と比較して,競争性能が向上することを示す。
論文 参考訳(メタデータ) (2022-01-03T06:16:30Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。