論文の概要: EMVLight: a Multi-agent Reinforcement Learning Framework for an
Emergency Vehicle Decentralized Routing and Traffic Signal Control System
- arxiv url: http://arxiv.org/abs/2206.13441v2
- Date: Tue, 28 Jun 2022 05:04:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-02 23:45:43.363526
- Title: EMVLight: a Multi-agent Reinforcement Learning Framework for an
Emergency Vehicle Decentralized Routing and Traffic Signal Control System
- Title(参考訳): EMVLight:緊急車両分散型ルーティング・交通信号制御システムのためのマルチエージェント強化学習フレームワーク
- Authors: Haoran Su, Yaofeng D. Zhong, Joseph Y.J. Chow, Biswadip Dey, Li Jin
- Abstract要約: 救急車(EMV)は、都市部における救急医療や火災発生などの時間的危機に対応する上で重要な役割を担っている。
EMVディスパッチの既存の手法は、典型的には、過去のトラフィックフローデータに基づいて経路を最適化し、それに従って交通信号のプリエンプションを設計する。
本研究では,共同動的EMVルーティングと交通信号プリエンプションのための分散強化学習フレームワークであるEMVLightを提案する。
- 参考スコア(独自算出の注目度): 4.622745478006317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emergency vehicles (EMVs) play a crucial role in responding to time-critical
calls such as medical emergencies and fire outbreaks in urban areas. Existing
methods for EMV dispatch typically optimize routes based on historical
traffic-flow data and design traffic signal pre-emption accordingly; however,
we still lack a systematic methodology to address the coupling between EMV
routing and traffic signal control. In this paper, we propose EMVLight, a
decentralized reinforcement learning (RL) framework for joint dynamic EMV
routing and traffic signal pre-emption. We adopt the multi-agent advantage
actor-critic method with policy sharing and spatial discounted factor. This
framework addresses the coupling between EMV navigation and traffic signal
control via an innovative design of multi-class RL agents and a novel
pressure-based reward function. The proposed methodology enables EMVLight to
learn network-level cooperative traffic signal phasing strategies that not only
reduce EMV travel time but also shortens the travel time of non-EMVs.
Simulation-based experiments indicate that EMVLight enables up to a $42.6\%$
reduction in EMV travel time as well as an $23.5\%$ shorter average travel time
compared with existing approaches.
- Abstract(参考訳): 救急車(EMV)は、都市部における救急医療や火災発生などの時間的危機対応に重要な役割を果たしている。
既存のemvディスパッチ手法では,過去のトラヒックフローデータに基づいて経路を最適化し,それに従ってトラヒック信号のプリエンプションを設計するが,emvルーティングとトラヒック信号制御の結合に対処する体系的な手法に欠ける。
本稿では,共同動的EMVルーティングと交通信号プリエンプションのための分散強化学習(RL)フレームワークであるEMVLightを提案する。
ポリシー共有と空間割引係数を備えたマルチエージェント・アドバンテージ・アクター・クリティカルな手法を採用する。
本フレームワークは,マルチクラスRLエージェントの革新的な設計と新しい圧力に基づく報酬関数により,EMVナビゲーションと交通信号制御の結合に対処する。
提案手法により,emvの移動時間を短縮するだけでなく,非emvの移動時間を短縮するネットワークレベルの協調交通信号フェース戦略を学習できる。
シミュレーションに基づく実験により、emvlightは、既存のアプローチと比較して平均走行時間を23.5セント短縮するだけでなく、emvの走行時間を最大42.6セント削減できることが示された。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Think Twice Before Recognizing: Large Multimodal Models for General Fine-grained Traffic Sign Recognition [49.20086587208214]
我々は、微粒な交通標識認識(TSR)を改善するために認識する前に、思考と呼ばれる新しい戦略を提案する。
我々の戦略は、大型マルチモーダルモデル(LMM)の多重思考能力を刺激することで、有効な微粒化TSRを実現する。
論文 参考訳(メタデータ) (2024-09-03T02:08:47Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - A Decentralized Reinforcement Learning Framework for Efficient Passage
of Emergency Vehicles [6.748225062396441]
救急車(EMV)は、都市が時間的に重要な出来事に対処する上で重要な役割を担っている。
EMVの走行時間を短縮するための既存のアプローチでは、経路最適化と信号プリエンプションが採用されている。
本稿では,動的ルーティングと信号制御を同時に行うためのフレームワークであるEMVLightを紹介する。
論文 参考訳(メタデータ) (2021-10-30T16:13:48Z) - EMVLight: A Decentralized Reinforcement Learning Framework for
EfficientPassage of Emergency Vehicles [8.91479401538491]
救急車(EMV)は、都市部における救急医療や火災発生などの時間的危機に対応する上で重要な役割を担っている。
EMVの走行時間を短縮するために、過去の交通フローデータと最適な経路に基づく信号プリエンプションに基づいて経路最適化を行った。
動的ルーティングと信号制御を同時に行うための分散強化学習フレームワークであるEMVLightを提案する。
論文 参考訳(メタデータ) (2021-09-12T04:21:50Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
非効率な信号制御手法は、交通渋滞やエネルギー浪費などの多くの問題を引き起こす可能性がある。
本稿では,アクター・クリティカル・ポリシー・グラデーション・アルゴリズムを拡張し,マルチエージェント・ディープ・決定性ポリシー・グラデーション(MADDPG)法を提案する。
論文 参考訳(メタデータ) (2021-07-13T14:11:04Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z) - V2I Connectivity-Based Dynamic Queue-Jump Lane for Emergency Vehicles: A
Deep Reinforcement Learning Approach [3.39322931607753]
EMVサービスの遅延の主な理由は、EMVをブロックする車両間の通信と協力の欠如である。
連結車両のリアルタイム協調に基づく動的待ち行列ジャンプレーン(DQJL)の確立について検討する。
本稿では、最適調整命令を効率的に計算するディープニューラルネットワークに基づく強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-01T20:34:16Z) - Dynamic Queue-Jump Lane for Emergency Vehicles under Partially Connected
Settings: A Multi-Agent Deep Reinforcement Learning Approach [3.39322931607753]
救急車(EMV)サービスは都市の重要な機能であり、都市交通渋滞のため非常に困難である。
本稿では,V2X接続下でのEMVサービスの改善について検討する。
非接続車両の存在下での連結車両のリアルタイム協調に基づく動的キュージャンプレーン(DQJL)の確立を検討する。
論文 参考訳(メタデータ) (2020-03-02T16:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。