Generalizable and Fast Surrogates: Model Predictive Control of Articulated Soft Robots using Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2502.01916v1
- Date: Tue, 04 Feb 2025 01:16:33 GMT
- Title: Generalizable and Fast Surrogates: Model Predictive Control of Articulated Soft Robots using Physics-Informed Neural Networks
- Authors: Tim-Lukas Habich, Aran Mohammad, Simon F. G. Ehlers, Martin Bensch, Thomas Seel, Moritz Schappler,
- Abstract summary: We propose physics-informed neural networks (PINNs) for articulated soft robots (ASRs) with a focus on data efficiency.
The amount of expensive real-world training data is reduced to a minimum - one dataset in one system domain.
The prediction speed of an accurate FP model is improved with the PINN by up to a factor of 466 at slightly reduced accuracy.
- Score: 4.146337610044239
- License:
- Abstract: Soft robots can revolutionize several applications with high demands on dexterity and safety. When operating these systems, real-time estimation and control require fast and accurate models. However, prediction with first-principles (FP) models is slow, and learned black-box models have poor generalizability. Physics-informed machine learning offers excellent advantages here, but it is currently limited to simple, often simulated systems without considering changes after training. We propose physics-informed neural networks (PINNs) for articulated soft robots (ASRs) with a focus on data efficiency. The amount of expensive real-world training data is reduced to a minimum - one dataset in one system domain. Two hours of data in different domains are used for a comparison against two gold-standard approaches: In contrast to a recurrent neural network, the PINN provides a high generalizability. The prediction speed of an accurate FP model is improved with the PINN by up to a factor of 466 at slightly reduced accuracy. This enables nonlinear model predictive control (MPC) of the pneumatic ASR. In nine dynamic MPC experiments, an average joint-tracking error of 1.3{\deg} is achieved.
Related papers
- Domain-decoupled Physics-informed Neural Networks with Closed-form Gradients for Fast Model Learning of Dynamical Systems [2.8730926763860687]
Physics-informed neural networks (PINNs) are trained using physical equations and can incorporate unmodeled effects by learning from data.
We introduce the domain-decoupled physics-informed neural network (DD-PINN) to address current limitations of PINC in handling large and complex nonlinear dynamical systems.
arXiv Detail & Related papers (2024-08-27T10:54:51Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
Most machine learning (ML) systems assume stationary and matching data distributions during training and deployment.
Data distributions often shift over time due to changes in environmental factors, sensor characteristics, and task-of-interest.
This paper presents theAdaptor-Reconfigurator (EAR) framework for efficient continual learning under domain shifts.
arXiv Detail & Related papers (2023-08-03T23:55:17Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed
Neural Network [6.309365332210523]
We propose a Robust Adaptive MPC framework via PINNs (RAMP-Net), which uses a neural network trained partly from simple ODEs and partly from data.
We report 7.8% to 43.2% and 8.04% to 61.5% reduction in tracking errors for speeds ranging from 0.5 to 1.75 m/s compared to two SOTA regression based MPC methods.
arXiv Detail & Related papers (2022-09-19T16:11:51Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - Physics-informed Neural Networks-based Model Predictive Control for
Multi-link Manipulators [0.0]
We discuss nonlinear model predictive control (NMPC) for multi-body dynamics via physics-informed machine learning methods.
We present the idea of enhancing PINNs by adding control actions and initial conditions as additional network inputs.
We present our results using our PINN-based MPC to solve a tracking problem for a complex mechanical system.
arXiv Detail & Related papers (2021-09-22T15:31:24Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Fast Modeling and Understanding Fluid Dynamics Systems with
Encoder-Decoder Networks [0.0]
We show that an accurate deep-learning-based proxy model can be taught efficiently by a finite-volume-based simulator.
Compared to traditional simulation, the proposed deep learning approach enables much faster forward computation.
We quantify the sensitivity of the deep learning model to key physical parameters and hence demonstrate that the inversion problems can be solved with great acceleration.
arXiv Detail & Related papers (2020-06-09T17:14:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.