論文の概要: Quantifying Sources of Uncertainty in Deep Learning-Based Image
Reconstruction
- arxiv url: http://arxiv.org/abs/2011.08413v2
- Date: Mon, 30 Nov 2020 03:47:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 16:48:35.202539
- Title: Quantifying Sources of Uncertainty in Deep Learning-Based Image
Reconstruction
- Title(参考訳): 深層学習に基づく画像再構成における不確かさ源の定量化
- Authors: Riccardo Barbano, \v{Z}eljko Kereta, Chen Zhang, Andreas Hauptmann,
Simon Arridge, Bangti Jin
- Abstract要約: 本稿では,学習反復画像再構成におけるアレタリックおよびエピステマティック不確かさを同時に定量化する,スケーラブルで効率的なフレームワークを提案する。
本手法は,スパークビューと制限角度データの両方を用いて,従来の計算トモグラフィーのベンチマークと競合する性能を示す。
- 参考スコア(独自算出の注目度): 5.129343375966527
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image reconstruction methods based on deep neural networks have shown
outstanding performance, equalling or exceeding the state-of-the-art results of
conventional approaches, but often do not provide uncertainty information about
the reconstruction. In this work we propose a scalable and efficient framework
to simultaneously quantify aleatoric and epistemic uncertainties in learned
iterative image reconstruction. We build on a Bayesian deep gradient descent
method for quantifying epistemic uncertainty, and incorporate the
heteroscedastic variance of the noise to account for the aleatoric uncertainty.
We show that our method exhibits competitive performance against conventional
benchmarks for computed tomography with both sparse view and limited angle
data. The estimated uncertainty captures the variability in the
reconstructions, caused by the restricted measurement model, and by missing
information, due to the limited angle geometry.
- Abstract(参考訳): ディープニューラルネットに基づく画像再構成手法は,従来手法の最先端結果に匹敵する性能を示してきたが,再構成に関する不確実性情報を提供しないことが多い。
本研究では,学習反復画像再構成におけるアレタリックおよびエピステマティック不確かさを同時に定量化する,スケーラブルで効率的なフレームワークを提案する。
本研究では, 難聴の定量化のためのベイズ勾配勾配降下法を構築し, アレタリック不確実性を考慮した非定常的ノイズ分散を取り入れた。
本手法は,スパークビューと制限角度データの両方を用いて,従来の計算トモグラフィーのベンチマークと競合する性能を示す。
推定された不確実性は、制限された測定モデルによる再構成や、制限された角度幾何学による情報不足による変化を捉えている。
関連論文リスト
- On the Quantification of Image Reconstruction Uncertainty without
Training Data [5.057039869893053]
本稿では,深部生成モデルを用いて近似後部分布を学習する深部変分フレームワークを提案する。
フローベースモデルを用いてターゲット後部をパラメータ化し,KL(Kullback-Leibler)の発散を最小限に抑え,正確な不確実性推定を実現する。
提案手法は信頼性と高品質な画像再構成を実現し,信頼性の高い不確実性を推定する。
論文 参考訳(メタデータ) (2023-11-16T07:46:47Z) - Equivariant Bootstrapping for Uncertainty Quantification in Imaging
Inverse Problems [0.24475591916185502]
パラメトリックブートストラップアルゴリズムの等価な定式化に基づく新しい不確実性定量化手法を提案する。
提案手法は汎用的であり,任意の画像再構成手法で容易に適用可能である。
提案手法を数値実験および代替不確実性定量化戦略との比較により実証する。
論文 参考訳(メタデータ) (2023-10-18T09:43:15Z) - Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations [69.25683256447044]
本稿では,学習画像圧縮(lic)の再構成品質を効果的に劣化させる攻撃手法を提案する。
我々は,Frobeniusノルムに基づく損失関数を導入して,元の画像と再構成された逆例との差を最大化することによって,逆例を生成する。
様々なlicモデルを用いてKodakデータセット上で実験を行った結果,有効性が確認された。
論文 参考訳(メタデータ) (2023-06-01T20:21:05Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - Uncertainty Quantification for Deep Unrolling-Based Computational
Imaging [0.0]
本稿では,観察モデルを再構成タスクに組み込んだ学習型画像再構成フレームワークを提案する。
提案手法は,最先端のDeep Unrolling手法に匹敵する再現性能を達成しつつ,不確実性情報を提供できることを示す。
論文 参考訳(メタデータ) (2022-07-02T00:22:49Z) - Image-to-Image Regression with Distribution-Free Uncertainty
Quantification and Applications in Imaging [88.20869695803631]
真値を含むことが保証される各画素の周囲の不確実な間隔を導出する方法を示す。
画像から画像への回帰を3つのタスクで評価する。
論文 参考訳(メタデータ) (2022-02-10T18:59:56Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - Scene Uncertainty and the Wellington Posterior of Deterministic Image
Classifiers [68.9065881270224]
Wellington Posteriorは、同じシーンで生成された可能性のあるデータに応答して得られるであろう結果の分布である。
We we explore the use of data augmentation, dropout, ensembling, single-view reconstruction and model linearization to compute a Wellington Posterior。
他にも、生成逆数ネットワーク、ニューラルレイディアンスフィールド、条件付き事前ネットワークなどの条件付き生成モデルの使用がある。
論文 参考訳(メタデータ) (2021-06-25T20:10:00Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
我々は,モデル不連続な不確かさを定量化するベイズ変分フレームワークを提案する。
提案手法はMRIのアンダーサンプを用いた再建術の術後成績を示す。
論文 参考訳(メタデータ) (2021-02-12T18:08:14Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - A deep-learning based Bayesian approach to seismic imaging and
uncertainty quantification [0.4588028371034407]
不確実性は、不条件の逆問題を扱う際に必須である。
未知の知識を正確に符号化する事前分布を定式化することは、しばしば不可能である。
本稿では,無作為な畳み込みニューラルネットワークの機能形式を,前もって暗黙的な構造として利用することを提案する。
論文 参考訳(メタデータ) (2020-01-13T23:46:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。