Degradation-Guided Meta-Restoration Network for Blind Super-Resolution
- URL: http://arxiv.org/abs/2207.00943v1
- Date: Sun, 3 Jul 2022 03:24:45 GMT
- Title: Degradation-Guided Meta-Restoration Network for Blind Super-Resolution
- Authors: Fuzhi Yang, Huan Yang, Yanhong Zeng, Jianlong Fu, Hongtao Lu
- Abstract summary: Blind super-resolution (SR) aims to recover high-quality visual textures from a low-resolution (LR) image.
Existing SR approaches either assume a predefined blur kernel or a fixed noise, which limits these approaches in challenging cases.
We propose a Degradation-guided Meta-restoration network for blind Super-Resolution (DMSR) that facilitates image restoration for real cases.
- Score: 45.61951760826198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blind super-resolution (SR) aims to recover high-quality visual textures from
a low-resolution (LR) image, which is usually degraded by down-sampling blur
kernels and additive noises. This task is extremely difficult due to the
challenges of complicated image degradations in the real-world. Existing SR
approaches either assume a predefined blur kernel or a fixed noise, which
limits these approaches in challenging cases. In this paper, we propose a
Degradation-guided Meta-restoration network for blind Super-Resolution (DMSR)
that facilitates image restoration for real cases. DMSR consists of a
degradation extractor and meta-restoration modules. The extractor estimates the
degradations in LR inputs and guides the meta-restoration modules to predict
restoration parameters for different degradations on-the-fly. DMSR is jointly
optimized by a novel degradation consistency loss and reconstruction losses.
Through such an optimization, DMSR outperforms SOTA by a large margin on three
widely-used benchmarks. A user study including 16 subjects further validates
the superiority of DMSR in real-world blind SR tasks.
Related papers
- Enhanced Super-Resolution Training via Mimicked Alignment for Real-World Scenes [51.92255321684027]
We propose a novel plug-and-play module designed to mitigate misalignment issues by aligning LR inputs with HR images during training.
Specifically, our approach involves mimicking a novel LR sample that aligns with HR while preserving the characteristics of the original LR samples.
We comprehensively evaluate our method on synthetic and real-world datasets, demonstrating its effectiveness across a spectrum of SR models.
arXiv Detail & Related papers (2024-10-07T18:18:54Z) - Low-Res Leads the Way: Improving Generalization for Super-Resolution by
Self-Supervised Learning [45.13580581290495]
This work introduces a novel "Low-Res Leads the Way" (LWay) training framework to enhance the adaptability of SR models to real-world images.
Our approach utilizes a low-resolution (LR) reconstruction network to extract degradation embeddings from LR images, merging them with super-resolved outputs for LR reconstruction.
Our training regime is universally compatible, requiring no network architecture modifications, making it a practical solution for real-world SR applications.
arXiv Detail & Related papers (2024-03-05T02:29:18Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
Illumination degradation image restoration (IDIR) techniques aim to improve the visibility of degraded images and mitigate the adverse effects of deteriorated illumination.
Among these algorithms, diffusion model (DM)-based methods have shown promising performance but are often burdened by heavy computational demands and pixel misalignment issues when predicting the image-level distribution.
We propose to leverage DM within a compact latent space to generate concise guidance priors and introduce a novel solution called Reti-Diff for the IDIR task.
Reti-Diff comprises two key components: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer (RG
arXiv Detail & Related papers (2023-11-20T09:55:06Z) - DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution [15.694407977871341]
Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation.
Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels.
We propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR.
arXiv Detail & Related papers (2022-12-15T04:34:57Z) - The Best of Both Worlds: a Framework for Combining Degradation
Prediction with High Performance Super-Resolution Networks [14.804000317612305]
We present a framework for combining blind SR prediction mechanism with any deep SR network.
We show that our hybrid models consistently achieve stronger SR performance than both their non-blind and blind counterparts.
arXiv Detail & Related papers (2022-11-09T16:49:35Z) - Blind Super-Resolution for Remote Sensing Images via Conditional
Stochastic Normalizing Flows [14.882417028542855]
We propose a novel blind SR framework based on the normalizing flow (BlindSRSNF) to address the above problems.
BlindSRSNF learns the conditional probability distribution over the high-resolution image space given a low-resolution (LR) image by explicitly optimizing the variational bound on the likelihood.
We show that the proposed algorithm can obtain SR results with excellent visual perception quality on both simulated LR and real-world RSIs.
arXiv Detail & Related papers (2022-10-14T12:37:32Z) - Meta-Learning based Degradation Representation for Blind
Super-Resolution [54.93926549648434]
We propose a Meta-Learning based Region Degradation Aware SR Network (MRDA)
We use the MRDA to rapidly adapt to the specific complex degradation after several iterations and extract implicit degradation information.
A teacher network MRDA$_T$ is designed to further utilize the degradation information extracted by MLN for SR.
arXiv Detail & Related papers (2022-07-28T09:03:00Z) - Reference-based Image Super-Resolution with Deformable Attention
Transformer [62.71769634254654]
RefSR aims to exploit auxiliary reference (Ref) images to super-resolve low-resolution (LR) images.
This paper proposes a deformable attention Transformer, namely DATSR, with multiple scales.
Experiments demonstrate that our DATSR achieves state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-07-25T07:07:00Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.