論文の概要: Connecting the Dots in Trustworthy Artificial Intelligence: From AI
Principles, Ethics, and Key Requirements to Responsible AI Systems and
Regulation
- arxiv url: http://arxiv.org/abs/2305.02231v2
- Date: Mon, 12 Jun 2023 21:07:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 17:15:41.491098
- Title: Connecting the Dots in Trustworthy Artificial Intelligence: From AI
Principles, Ethics, and Key Requirements to Responsible AI Systems and
Regulation
- Title(参考訳): 信頼できる人工知能でDotを接続する:AI原則、倫理、そして責任あるAIシステムと規制への重要な要件から
- Authors: Natalia D\'iaz-Rodr\'iguez, Javier Del Ser, Mark Coeckelbergh, Marcos
L\'opez de Prado, Enrique Herrera-Viedma, Francisco Herrera
- Abstract要約: 私たちは、真に信頼できるAIを達成することは、システムのライフサイクルの一部であるすべてのプロセスとアクターの信頼性を懸念する、と論じています。
AIベースのシステムの倫理的利用と開発のためのグローバルな原則、AI倫理に対する哲学的な見解、AI規制に対するリスクベースのアプローチである。
信頼できるAIに関する私たちの学際的なビジョンは、最近発表されたAIの未来に関するさまざまな見解に関する議論で頂点に達した。
- 参考スコア(独自算出の注目度): 22.921683578188645
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Trustworthy Artificial Intelligence (AI) is based on seven technical
requirements sustained over three main pillars that should be met throughout
the system's entire life cycle: it should be (1) lawful, (2) ethical, and (3)
robust, both from a technical and a social perspective. However, attaining
truly trustworthy AI concerns a wider vision that comprises the trustworthiness
of all processes and actors that are part of the system's life cycle, and
considers previous aspects from different lenses. A more holistic vision
contemplates four essential axes: the global principles for ethical use and
development of AI-based systems, a philosophical take on AI ethics, a
risk-based approach to AI regulation, and the mentioned pillars and
requirements. The seven requirements (human agency and oversight; robustness
and safety; privacy and data governance; transparency; diversity,
non-discrimination and fairness; societal and environmental wellbeing; and
accountability) are analyzed from a triple perspective: What each requirement
for trustworthy AI is, Why it is needed, and How each requirement can be
implemented in practice. On the other hand, a practical approach to implement
trustworthy AI systems allows defining the concept of responsibility of
AI-based systems facing the law, through a given auditing process. Therefore, a
responsible AI system is the resulting notion we introduce in this work, and a
concept of utmost necessity that can be realized through auditing processes,
subject to the challenges posed by the use of regulatory sandboxes. Our
multidisciplinary vision of trustworthy AI culminates in a debate on the
diverging views published lately about the future of AI. Our reflections in
this matter conclude that regulation is a key for reaching a consensus among
these views, and that trustworthy and responsible AI systems will be crucial
for the present and future of our society.
- Abstract(参考訳): 信頼できる人工知能(AI)は、(1)法的、(2)倫理的、(3)堅牢でなければならない、技術的、社会的な観点から、システムのライフサイクル全体を通して満たすべき3つの主要な柱に持続する7つの技術的要件に基づいている。
しかし、真に信頼できるAIを達成することは、システムのライフサイクルの一部であるすべてのプロセスとアクターの信頼性を含むより広いビジョンを懸念し、異なるレンズから以前の側面を考察する。
AIベースのシステムの倫理的利用と開発のためのグローバルな原則、AI倫理に対する哲学的な見解、AI規制に対するリスクベースのアプローチ、そして前述の柱と要件である。
7つの要件(人間機関と監督、堅牢性と安全性、プライバシとデータガバナンス、透明性、多様性、非差別性と公正性、社会的および環境の健全性、説明責任)は、3つの視点から分析される。
一方、信頼できるAIシステムを実装するための実践的なアプローチは、所定の監査プロセスを通じて、法に直面するAIベースのシステムの責任の概念を定義することを可能にする。
したがって、責任あるAIシステムは、我々が本研究で導入した概念であり、規制サンドボックスの使用によって引き起こされる課題に対して、監査プロセスを通じて実現可能な最も必要な概念である。
信頼できるAIに関する私たちの学際的なビジョンは、最近発表されたAIの未来に関するさまざまな見解に関する議論で頂点に達した。
当社のリフレクションでは、規制はこれらの見解の合意に達するための鍵であり、信頼に値する責任あるaiシステムは我々の社会の現在と未来にとって不可欠である、と結論づけています。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - POLARIS: A framework to guide the development of Trustworthy AI systems [3.02243271391691]
ハイレベルなAI倫理原則と、AI専門家のための低レベルな具体的なプラクティスの間には、大きなギャップがある。
我々は、理論と実践のギャップを埋めるために設計された、信頼に値するAIのための新しい総合的なフレームワークを開発する。
私たちの目標は、AIプロフェッショナルが信頼できるAIの倫理的側面を確実にナビゲートできるようにすることです。
論文 参考訳(メタデータ) (2024-02-08T01:05:16Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Survey on AI Ethics: A Socio-technical Perspective [0.9374652839580183]
AIに関連する倫理的懸念には、公正性、プライバシとデータ保護、責任と説明責任、安全性と堅牢性、透明性と説明可能性、環境への影響といった課題が含まれている。
この研究は、AIを社会に展開する際の現在と将来の倫理的懸念を統一する。
論文 参考訳(メタデータ) (2023-11-28T21:00:56Z) - AI Ethics: An Empirical Study on the Views of Practitioners and
Lawmakers [8.82540441326446]
透明性、説明責任、プライバシは、AI倫理の最も重要な原則です。
倫理的知識の不足、法的枠組みの欠如、監視機関の欠如が、AI倫理の最も一般的な課題である。
論文 参考訳(メタデータ) (2022-06-30T17:24:29Z) - Never trust, always verify : a roadmap for Trustworthy AI? [12.031113181911627]
我々はAIベースのシステムのコンテキストにおける信頼を検証し、AIシステムが信頼に値するものとなることの意味を理解する。
我々は、AIに対する信頼(resp. zero-trust)モデルを提案し、AIシステムの信頼性を保証するために満足すべき特性のセットを提案する。
論文 参考訳(メタデータ) (2022-06-23T21:13:10Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
多くの現在のAIシステムは、認識不能な攻撃に脆弱で、表現不足なグループに偏り、ユーザのプライバシ保護が欠如していることが判明した。
このレビューでは、信頼できるAIシステムを構築するための包括的なガイドとして、AI実践者に提供したいと思っています。
信頼に値するAIに対する現在の断片化されたアプローチを統合するために、AIシステムのライフサイクル全体を考慮した体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-04T03:20:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。