Dissipative Landau-Zener tunneling in the crossover regime from weak to strong environment coupling
- URL: http://arxiv.org/abs/2207.02017v2
- Date: Sun, 05 Jan 2025 01:21:16 GMT
- Title: Dissipative Landau-Zener tunneling in the crossover regime from weak to strong environment coupling
- Authors: X. Dai, R. Trappen, H. Chen, D. Melanson, M. A. Yurtalan, D. M. Tennant, A. J. Martinez, Y. Tang, E. Mozgunov, J. Gibson, J. A. Grover, S. M. Disseler, J. I. Basham, S. Novikov, R. Das, A. J. Melville, B. M. Niedzielski, C. F. Hirjibehedin, K. Serniak, S. J. Weber, J. L. Yoder, W. D. Oliver, K. M. Zick, D. A. Lidar, A. Lupascu,
- Abstract summary: Landau-Zener tunneling describes the transition in a two-level system during a sweep through an anti-crossing.<n>We observe the crossover from weak to strong coupling to the environment in Landau-Zener tunneling.
- Score: 0.023455724128621718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Landau-Zener tunneling, which describes the transition in a two-level system during a sweep through an anti-crossing, is a model applicable to a wide range of physical phenomena. Realistic quantum systems are affected by dissipation due to coupling to their environments. An important aspect of understanding such open quantum systems is the relative energy scales of the system itself and the system-environment coupling, which distinguishes the weak- and strong-coupling regimes. Using a tunable superconducting flux qubit, we observe the crossover from weak to strong coupling to the environment in Landau-Zener tunneling. Our results confirm previous theoretical studies of dissipative Landau-Zener tunneling in the weak and strong coupling limits. We devise a spin bath model that effectively captures the crossover regime. This work is relevant for understanding the role of dissipation in quantum annealing, where the system is expected to go through a cascade of Landau-Zener transitions before reaching the target state.
Related papers
- Quantum channel for modeling spin-motion dephasing in Rydberg chains [44.99833362998488]
We introduce a quantum channel to model the dissipative dynamics resulting from the coupling between spin and motional degrees of freedom in chains of neutral atoms with Rydberg interactions.<n>We benchmark the accuracy of our approach against exact diagonalization for small systems, identifying its regime of validity and the onset of perturbative breakdown.<n>We then apply the quantum channel to compute fidelity loss during transport of single-spin excitations across extended Rydberg chains in intractable regimes via exact diagonalization.
arXiv Detail & Related papers (2025-06-30T17:37:38Z) - Cotunneling assisted nonequilibrium thermodynamics of a photosynthetic junction [1.0889037375410424]
We theoretically investigate a photosystem II-based reaction center modeled as a nonequilibrium quantum junction.
We focus on the electron-electron interactions that enable cotunneling events to be captured through quantum mechanical rates.
arXiv Detail & Related papers (2024-10-15T10:24:03Z) - Steady-state dynamics and non-local correlations in thermoelectric Cooper pair splitters [43.62395775086322]
Recent experiments on Cooper pair splitters using superconductor-quantum dot hybrids have embarked on creating entanglement in the solid-state.
We present a comprehensive analysis of the fundamental components of the observed transport signal.
Our work provides detailed insights into the gate voltage control of the quantum correlations in superconducting-hybrid Cooper pair splitters.
arXiv Detail & Related papers (2024-06-10T06:46:10Z) - Probing Site-Resolved Current in Strongly Interacting Superconducting Circuit Lattices [0.0]
Transport measurements are fundamental for understanding condensed matter phenomena, from superconductivity to the fractional quantum Hall effect.
Here we demonstrate the measurement of in-situ particle current in a superconducting circuit lattice and apply it to study transport in both coherent and bath-coupled lattices.
arXiv Detail & Related papers (2024-03-18T17:08:04Z) - Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems [44.99833362998488]
We study a generalised XXZ model in the presence of collision noise, which allows to describe environments beyond the standard Markovian formulation.
Results constitute an example of the essential building blocks for the understanding of quantum transport in noisy and warm disordered environments.
arXiv Detail & Related papers (2023-11-15T12:55:28Z) - Coherent excitation transport through ring-shaped networks [0.0]
coherent quantum transport of matter wave through a ring-shaped circuit attached to leads defines an iconic system in mesoscopic physics.
We study the source-to-drain transport of excitations going through a ring-network, without propagation of matter waves.
arXiv Detail & Related papers (2023-10-27T08:31:20Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Channel-Dependent Population Transfer: A Framework for Analyzing Complex
Reaction Pathways [0.0]
We present an approach of analyzing the transport of a quantum particle in a non-trivially connected extended system.
We show the richness hidden behind the transport even for relatively simple systems.
arXiv Detail & Related papers (2023-01-30T07:44:54Z) - Energy Transport Induced by Transition from Weak to Strong Coupling
Regime Between Non-Hermitian systems [0.0]
We use a partial-secular approach for the description of an open quantum system.
We show that near the transition point enhancement of energy transport between the system and reservoirs takes place.
We show that both in the case of non-zero detuning when there is no clear transition point from the weak to strong coupling regime.
arXiv Detail & Related papers (2022-11-15T20:21:38Z) - From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks [68.8204255655161]
Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport.
This paper shows that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.
arXiv Detail & Related papers (2022-10-21T10:57:16Z) - Cavity-based reservoir engineering for Floquet-engineered
superconducting circuits [0.0]
Floquet engineering refers to the control of a quantum system by means of time-periodic forcing.
Reservoir engineering can be achieved in superconducting circuits by coupling a system of artificial atoms (or qubits) dispersively to pumped leaky cavities.
arXiv Detail & Related papers (2022-05-31T13:27:42Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Engineering the speedup of quantum tunneling in Josephson systems via
dissipation [0.0]
We consider Ohmic resistors inducing dissipation both in the phase and in the charge of the quantum circuit.
We find that the charge dissipation leads to an enhancement of the quantum escape rate.
arXiv Detail & Related papers (2022-03-16T15:56:29Z) - Localisation determines the optimal noise rate for quantum transport [68.8204255655161]
Localisation and the optimal dephasing rate in 1D chains are studied.
A simple power law captures the interplay between size-dependent and size-independent responses.
Relationship continues to apply at intermediate and high temperature but breaks down in the low temperature limit.
arXiv Detail & Related papers (2021-06-23T17:52:16Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Effects of disorder and interactions on environment assisted quantum
transport [0.0]
We show a surprising situation where the particle current grows with increasing disorder, even without dephasing.
We show that repulsive interactions are detrimental to ENAQT, and lead to an environment-hampered quantum transport.
arXiv Detail & Related papers (2020-05-09T15:19:02Z) - Topological quantum transport and spatial entanglement distribution via
disordered bulk channel [0.0]
We show how to implement quantum transport, generate entangled state and achieve spatial entanglement distribution.
We introduce the on-site disorders to suppress the high-order resonant tunneling.
We also demonstrate how to prepare spatially entangled two-particle NOON state via Hong-Ou-Mandel interference.
arXiv Detail & Related papers (2020-02-16T09:21:52Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.