論文の概要: Deterministic Decoupling of Global Features and its Application to Data
Analysis
- arxiv url: http://arxiv.org/abs/2207.02132v1
- Date: Tue, 5 Jul 2022 15:54:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-06 17:16:39.839234
- Title: Deterministic Decoupling of Global Features and its Application to Data
Analysis
- Title(参考訳): グローバル特徴量の決定論的分離とそのデータ分析への応用
- Authors: Eduardo Martinez-Enriquez (1), Maria del Mar Gonzalez (2), Javier
Portilla (1) ((1) Consejo Superior de Investigaciones Cientificas CSIC, (2)
Universidad Autonoma de Madrid)
- Abstract要約: 部分多様体上の変換の定義に基づく新しい定式化を提案する。
これらの変換を通じて正規化を定義し、それを実証することで、微分可能な特徴を分離することができる。
本手法を,グローバルな記述子に基づく回帰・分類問題に対して,元のデータ領域とフィルタバンクの出力に適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a method for deterministic decoupling of global features and
show its applicability to improve data analysis performance, as well as to open
new venues for feature transfer. We propose a new formalism that is based on
defining transformations on submanifolds, by following trajectories along the
features gradients. Through these transformations we define a normalization
that, we demonstrate, allows for decoupling differentiable features. By
applying this to sampling moments, we obtain a quasi-analytic solution for the
orthokurtosis, a normalized version of the kurtosis that is not just decoupled
from mean and variance, but also from skewness. We apply this method in the
original data domain and at the output of a filter bank to regression and
classification problems based on global descriptors, obtaining a consistent and
significant improvement in performance as compared to using classical
(non-decoupled) descriptors.
- Abstract(参考訳): 本稿では,グローバル機能を決定論的に分離する手法を紹介し,そのデータ解析性能の向上と,機能伝達のための新たな会場の開設に有用性を示す。
我々は,部分多様体上の変換を定義することに基づく新しい形式を,特徴勾配に沿った軌跡に従うことによって提案する。
これらの変換を通じて、我々は、微分可能な特徴の分離を可能にする正規化を定義する。
これをサンプリングモーメントに適用することにより、平均と分散から分離されるだけでなく、歪みからも分離された正規化カルトシスの準解析解が得られる。
本手法は,グローバルな記述子に基づく回帰・分類問題に対して,元のデータ領域およびフィルタバンクの出力に適用し,古典的(非分離型)記述子と比較して,一貫した性能向上を実現している。
関連論文リスト
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
本研究では,これらの問題に対処するために,Annealed Importance Smpling (AIS)アプローチを提案する。
シークエンシャルモンテカルロサンプリング器とVIの強度を組み合わせることで、より広い範囲の後方分布を探索し、徐々にターゲット分布に接近する。
実験結果から,本手法はより厳密な変動境界,高い対数類似度,より堅牢な収束率で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-08-13T08:09:05Z) - Generalized Laplace Approximation [23.185126261153236]
我々は、ベイズ的不整合を不特定性をモデル化し、不適切な先行をモデル化するために、統一された理論的枠組みを導入する。
正規化損失関数のヘッセン行列に対する簡単な調整を含む一般化ラプラス近似を提案する。
我々は、最先端のニューラルネットワークと実世界のデータセット上での一般化されたLaplace近似の性能と特性を評価する。
論文 参考訳(メタデータ) (2024-05-22T11:11:42Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
本稿では,学習前のニューラル回帰モデルの最後の層の重みを適応させて,異なる分布から得られる入力データを改善する手法を提案する。
本稿では,この軽量なスペクトル適応手法により,合成および実世界のデータセットの分布外性能が向上することを示す。
論文 参考訳(メタデータ) (2023-12-29T04:15:58Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
フェデレートラーニング(FL)は通常、サンプル比率によって決定される重み付けアプローチを使用して、クライアントモデルパラメータを集約する。
上記の重み付け法を,各局所モデルの一般化境界を考慮した新しい戦略に置き換える。
論文 参考訳(メタデータ) (2023-11-10T08:50:28Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
既存の一般化境界は、現代のニューラルネットワークの一般化を促進する重要な要因を説明することができない。
データ空間における学習予測関数の局所リプシッツ正則性に依存するインスタンス依存の一般化境界を導出する。
ニューラルネットワークに対する一般化境界を実験的に解析し、有界値が有意義であることを示し、トレーニング中の一般的な正規化方法の効果を捉える。
論文 参考訳(メタデータ) (2022-11-02T16:39:42Z) - Stability vs Implicit Bias of Gradient Methods on Separable Data and
Beyond [33.593203156666746]
分離線形分類に適用された非正規化勾配に基づく学習手順の一般化特性に着目する。
この一般化についてさらに統一的な説明をし、実現可能性と自己有界性(self-boundedness)と呼ぶ。
これらのケースのいくつかでは、文献における既存の一般化誤差境界に対して、我々の境界は著しく改善される。
論文 参考訳(メタデータ) (2022-02-27T19:56:36Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
多くの現実世界では、多数のラベル付きサンプルの収集は不可能です。
少ないショット学習はこの問題に対処するための主要なアプローチであり、目的は限られた数のサンプルの存在下で新しいカテゴリに迅速に適応することです。
幾何学的変換の一般集合に対する等分散と不変性を同時に強制する新しい訓練機構を提案する。
論文 参考訳(メタデータ) (2021-03-01T21:14:33Z) - Cluster-level Feature Alignment for Person Re-identification [16.01713931617725]
本稿では、データセット全体にわたるクラスタレベルの特徴アライメントという、別の特徴アライメントのモダリティを探索する。
クラスタレベルの特徴アライメントは,データセットの概要から反復的なアグリゲーションとアライメントから構成される。
論文 参考訳(メタデータ) (2020-08-15T23:47:47Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。