論文の概要: Cluster-level Feature Alignment for Person Re-identification
- arxiv url: http://arxiv.org/abs/2008.06810v1
- Date: Sat, 15 Aug 2020 23:47:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 21:01:06.584016
- Title: Cluster-level Feature Alignment for Person Re-identification
- Title(参考訳): 人物識別のためのクラスタレベルの特徴アライメント
- Authors: Qiuyu Chen, Wei Zhang, Jianping Fan
- Abstract要約: 本稿では、データセット全体にわたるクラスタレベルの特徴アライメントという、別の特徴アライメントのモダリティを探索する。
クラスタレベルの特徴アライメントは,データセットの概要から反復的なアグリゲーションとアライメントから構成される。
- 参考スコア(独自算出の注目度): 16.01713931617725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Instance-level alignment is widely exploited for person re-identification,
e.g. spatial alignment, latent semantic alignment and triplet alignment. This
paper probes another feature alignment modality, namely cluster-level feature
alignment across whole dataset, where the model can see not only the sampled
images in local mini-batch but the global feature distribution of the whole
dataset from distilled anchors. Towards this aim, we propose anchor loss and
investigate many variants of cluster-level feature alignment, which consists of
iterative aggregation and alignment from the overview of dataset. Our extensive
experiments have demonstrated that our methods can provide consistent and
significant performance improvement with small training efforts after the
saturation of traditional training. In both theoretical and experimental
aspects, our proposed methods can result in more stable and guided optimization
towards better representation and generalization for well-aligned embedding.
- Abstract(参考訳): インスタンスレベルのアライメントは、空間アライメント、潜在セマンティックアライメント、トリプルトアライメントなど、人物の再識別に広く利用される。
そこで本研究では, 局所的なミニバッチにおけるサンプル画像だけでなく, 蒸留アンカーからのデータセット全体のグローバルな特徴分布をモデルとして, データセット全体のクラスタレベルの特徴アライメントを探索する。
この目的に向けて,アンカーロスを提案し,データセットの概要から反復集約とアライメントからなるクラスタレベルの機能アライメントの多種多様な変種を調査した。
従来型トレーニングの飽和後の小さなトレーニングで,本手法が一貫した,重要なパフォーマンス向上を実現することを実証した。
理論と実験の両方の面において、提案手法はより安定し、より良い表現と整列埋め込みの一般化に向けた最適化を導くことができる。
関連論文リスト
- GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
我々は、Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)という新しいマルチビュークラスタリングモデルを提案する。
提案手法の主な目的は,2つの異なる空間における協調学習を活用することにより,クラスタリング性能を向上させることである。
我々のアルゴリズムは近似線形計算複雑性を持ち、大規模データセットへの適用が成功することを保証している。
論文 参考訳(メタデータ) (2024-01-28T16:30:13Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Hub-VAE: Unsupervised Hub-based Regularization of Variational
Autoencoders [11.252245456934348]
我々は、ハブベースの先行とハブベースのコントラスト損失を混合した非教師付きデータ駆動型潜在空間の正規化を提案する。
本アルゴリズムは,組込み空間におけるクラスタ分離性,高精度なデータ再構成と生成を実現する。
論文 参考訳(メタデータ) (2022-11-18T19:12:15Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Deterministic Decoupling of Global Features and its Application to Data
Analysis [0.0]
部分多様体上の変換の定義に基づく新しい定式化を提案する。
これらの変換を通じて正規化を定義し、それを実証することで、微分可能な特徴を分離することができる。
本手法を,グローバルな記述子に基づく回帰・分類問題に対して,元のデータ領域とフィルタバンクの出力に適用する。
論文 参考訳(メタデータ) (2022-07-05T15:54:39Z) - Transductive Few-Shot Learning: Clustering is All You Need? [31.21306826132773]
そこで本研究では,プロトタイプをベースとした超越的数ショット学習の汎用的定式化について検討する。
提案手法は, 精度と最適化の観点から, 大きな問題にスケールアップしながら, 競争性能を向上する。
驚いたことに、私たちの一般的なモデルは、最先端の学習と比較して、すでに競争力のあるパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2021-06-16T16:14:01Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Latent Space Regularization for Unsupervised Domain Adaptation in
Semantic Segmentation [14.050836886292869]
セマンティックセグメンテーションにおけるドメインの不一致を減らすために、機能レベルの空間形成正規化戦略を紹介します。
このような手法の有効性を自律運転環境で検証する。
論文 参考訳(メタデータ) (2021-04-06T16:07:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。