Excited-State Quantum Phase Transitions in the Anharmonic
Lipkin-Meshkov-Glick Model: Dynamical Aspects
- URL: http://arxiv.org/abs/2207.04489v4
- Date: Fri, 2 Jun 2023 16:12:39 GMT
- Title: Excited-State Quantum Phase Transitions in the Anharmonic
Lipkin-Meshkov-Glick Model: Dynamical Aspects
- Authors: Jamil Khalouf-Rivera, Juan Gamito, Francisco P\'erez-Bernal, Jos\'e
Miguel Arias, Pedro P\'erez-Fern\'andez
- Abstract summary: A quantum quench protocol is defined on the system Hamiltonian that takes an initial state, usually the ground state, into a complex excited state that evolves on time.
The impact of the new ESQPT on the time evolution of the survival probability and the local density of states after the quantum quench, as well as on the Loschmidt echoes and the microcanonical out-of-time-order correlator (OTOC) are discussed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The standard Lipkin-Meshkov-Glick (LMG) model undergoes a second-order
ground-state quantum phase transition (QPT) and an excited-state quantum phase
transition (ESQPT). The inclusion of an anharmonic term in the LMG Hamiltonian
gives rise to a second ESQPT that alters the static properties of the model
[Phys. Rev. E 106, 044125 (2022)]. In the present work, the dynamical
implications associated to this new ESQPT are analyzed. For that purpose, a
quantum quench protocol is defined on the system Hamiltonian that takes an
initial state, usually the ground state, into a complex excited state that
evolves on time. The impact of the new ESQPT on the time evolution of the
survival probability and the local density of states after the quantum quench,
as well as on the Loschmidt echoes and the microcanonical out-of-time-order
correlator (OTOC) are discussed. The anharmonity-induced ESQPT, despite having
a different physical origin, has dynamical consequences similar to those
observed in the ESQPT already present in the standard LMG model.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum computation of dynamical quantum phase transitions and
entanglement tomography in a lattice gauge theory [0.0]
Strongly-coupled gauge theories far from equilibrium may exhibit unique features that could illuminate the physics of the early universe.
We compute non-equal time correlation functions and perform entanglement tomography of non-equilibrium states of a simple lattice gauge theory.
Results constitute the first observation of a dynamical quantum phase transition in a lattice gauge theory on a quantum computer.
arXiv Detail & Related papers (2022-10-06T17:47:33Z) - Loschmidt amplitude spectrum in dynamical quantum phase transitions [0.0]
We study how the system behaves in the vicinity of dynamical quantum phase transitions (DQPTs)
Our findings provide a better understanding of the characteristics of the out-of-equilibrium system around DQPT.
arXiv Detail & Related papers (2022-03-14T10:54:31Z) - Excited-State Quantum Phase Transitions in the Anharmonic
Lipkin-Meshkov-Glick Model I: Static Aspects [0.0]
An anharmonic term in the Hamiltonian implies a second ESQPT of a different nature.
We characterize this ESQPT using the mean field limit of the model.
The new ESQPT, associated with the changes in the boundary of the finite Hilbert space of the system, can be properly described.
arXiv Detail & Related papers (2022-02-23T10:53:05Z) - Dynamical quantum phase transitions in the one-dimensional extended
Fermi-Hubbard model [0.0]
We study the emergence of dynamical quantum phase transitions (DQPTs) in a half-filled one-dimensional lattice.
We identify several types of sudden interaction quenches which lead to DQPTs.
State-of-the-art cold-atom quantum simulators constitute ideal platforms to implement several reported DQPTs experimentally.
arXiv Detail & Related papers (2021-09-16T04:12:50Z) - Dynamical Topological Quantum Phase Transitions at Criticality [0.0]
We contribute to expanding the systematic understanding of the interrelation between the equilibrium quantum phase transition and the dynamical quantum phase transition (DQPT)
Specifically, we find that dynamical quantum phase transition relies on the existence of massless it propagating quasiparticles as signaled by their impact on the Loschmidt overlap.
The underlying two dimensional model reveals gapless modes, which do not couple to the dynamical quantum phase transitions, while relevant massless quasiparticles present periodic nonanalytic signatures on the Loschmidt amplitude.
arXiv Detail & Related papers (2021-04-09T13:38:39Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.