Extending the laws of thermodynamics for arbitrary autonomous quantum
systems
- URL: http://arxiv.org/abs/2207.04850v4
- Date: Tue, 31 Jan 2023 12:54:23 GMT
- Title: Extending the laws of thermodynamics for arbitrary autonomous quantum
systems
- Authors: Cyril Elouard and Camille Lombard Latune
- Abstract summary: We show that energy exchanges between arbitrary quantum systems are structured by the laws of thermodynamics.
Our results open perspectives to understand and optimize the energetic performances of realistic quantum devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Originally formulated for macroscopic machines, the laws of thermodynamics
were recently shown to hold for quantum systems coupled to ideal sources of
work (external classical fields) and heat (systems at equilibrium). Ongoing
efforts have been focusing on extending the validity of thermodynamic laws to
more realistic, non-ideal energy sources. Here, we go beyond these extensions
and show that energy exchanges between arbitrary quantum systems are structured
by the laws of thermodynamics. We first generalize the second law and identify
the associated work and heat exchanges. After recovering known results from
ideal work and heat sources, we analyze some consequences of hybrid work and
heat sources. We illustrate our general laws with microscopic machines
realizing thermodynamic tasks in which the roles of heat and work sources are
simultaneously played by elementary quantum systems. Our results open
perspectives to understand and optimize the energetic performances of realistic
quantum devices, at any scale.
Related papers
- Correlated quantum machines beyond the standard second law [0.0]
We derive exact generalized laws of quantum thermodynamics for arbitrary, time-periodic, open systems.
Our results provide a unified formalism to determine the efficiency of correlated microscopic thermal devices.
arXiv Detail & Related papers (2024-09-12T10:09:20Z) - Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Thermodynamic state convertibility is determined by qubit cooling and
heating [2.9998889086656577]
We show how athermality can be used to heat and cool other quantum systems that are initially at thermal equilibrium.
We then show that the convertibility between quasi-classical resources is fully characterized by their ability to cool and heat qubits.
arXiv Detail & Related papers (2023-01-15T09:00:20Z) - Unification of the first law of quantum thermodynamics [0.0]
Underlying the classical thermodynamic principles are analogous microscopic laws, arising from the fundamental axioms of quantum mechanics.
The foremost quantum thermodynamic law is a simple statement concerning the conservation of energy.
There exist ambiguity and disagreement regarding the precise partition of a quantum system's energy change to work and heat.
arXiv Detail & Related papers (2022-08-22T19:36:41Z) - On the First Law of Thermodynamics in Time-Dependent Open Quantum
Systems [0.0]
How to rigorously define thermodynamic quantities such as heat, work, and internal energy in open quantum systems driven far from equilibrium remains a significant open question in quantum thermodynamics.
Heat is a quantity whose fundamental definition applies only to processes in systems infinitesimally perturbed from equilibrium.
Heat is accounted for carefully in strongly-driven systems.
arXiv Detail & Related papers (2022-08-13T02:26:31Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Quantum thermodynamically consistent local master equations [0.0]
We show that local master equations are consistent with thermodynamics and its laws without resorting to a microscopic model.
We consider a quantum system in contact with multiple baths and identify the relevant contributions to the total energy, heat currents and entropy production rate.
arXiv Detail & Related papers (2020-08-11T14:53:36Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.