論文の概要: Structural Stability of Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2207.04876v1
- Date: Tue, 21 Jun 2022 09:42:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-17 17:09:10.053120
- Title: Structural Stability of Spiking Neural Networks
- Title(参考訳): スパイクニューラルネットワークの構造安定性
- Authors: G. Zhang and S.-Q. Zhang
- Abstract要約: 本稿では,自己接続型スパイキングニューラルネットワークの理論特性について検討する。
また, 分岐解の最大値の上限値と上限値を指定することによって, 構造安定性の解析も行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The past decades have witnessed an increasing interest in spiking neural
networks (SNNs) due to their great potential of modeling time-dependent data.
Many algorithms and techniques have been developed; however, theoretical
understandings of many aspects of spiking neural networks are still cloudy. A
recent work [Zhang et al. 2021] disclosed that typical SNNs could hardly
withstand both internal and external perturbations due to their bifurcation
dynamics and suggested that self-connection has to be added. In this paper, we
investigate the theoretical properties of SNNs with self-connection, and
develop an in-depth analysis on structural stability by specifying the lower
and upper bounds of the maximum number of bifurcation solutions. Numerical
experiments conducted on simulation and practical tasks demonstrate the
effectiveness of the proposed results.
- Abstract(参考訳): 過去数十年間、時間に依存したデータをモデル化する大きな可能性から、スパイクニューラルネットワーク(SNN)への関心が高まっている。
多くのアルゴリズムや技術が開発されているが、スパイクニューラルネットワークの多くの側面に関する理論的理解はまだ曇っている。
最近の研究[Zhang et al. 2021]では、通常のSNNは分岐のダイナミクスによって内部および外部の摂動にほとんど耐えられず、自己接続を追加する必要があることを示唆している。
本稿では,自己結合を持つsnsの理論的性質を調査し,分岐解の最大数の下限と上限を指定することにより,構造安定性に関する深い解析を行う。
シミュレーションおよび実践的な課題に関する数値実験により,提案手法の有効性が示された。
関連論文リスト
- RelGNN: Composite Message Passing for Relational Deep Learning [56.48834369525997]
本稿では,リレーショナルデータベースの特徴を捉えた新しいGNNフレームワークであるRelGNNを紹介する。
我々のアプローチの核となるのは、高次三部構造を形成するノードの列である原子経路の導入である。
RelGNNは、最先端の精度を最大25%改善して一貫して達成している。
論文 参考訳(メタデータ) (2025-02-10T18:58:40Z) - Q-SNNs: Quantized Spiking Neural Networks [12.719590949933105]
スパイキングニューラルネットワーク(SNN)はスパーススパイクを利用して情報を表現し、イベント駆動方式で処理する。
シナプス重みと膜電位の両方に量子化を適用する軽量でハードウェアフレンドリな量子化SNNを提案する。
本稿では,情報エントロピー理論にインスパイアされた新しいウェイトスパイクデュアルレギュレーション(WS-DR)法を提案する。
論文 参考訳(メタデータ) (2024-06-19T16:23:26Z) - Understanding the Functional Roles of Modelling Components in Spiking Neural Networks [9.448298335007465]
スパイキングニューラルネットワーク(SNN)は、生物学的忠実さで高い計算効率を達成することを約束している。
LIFに基づくSNNにおけるキーモデリングコンポーネント,リーク,リセット,再起動の機能的役割について検討する。
具体的には、メモリ保持とロバスト性のバランスにおいてリークが重要な役割を担い、リセット機構は未中断の時間的処理と計算効率に不可欠であり、リセットは、ロバストネス劣化を犠牲にして複雑なダイナミクスをモデル化する能力を強化する。
論文 参考訳(メタデータ) (2024-03-25T12:13:20Z) - Inherent Redundancy in Spiking Neural Networks [24.114844269113746]
スパイキングネットワーク(SNN)は、従来の人工ニューラルネットワークに代わる有望なエネルギー効率の代替手段である。
本研究では,SNNにおける固有冗長性に関する3つの重要な疑問に焦点をあてる。
本稿では,SNNの冗長性を活用するためのアドバンストアテンション(ASA)モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-16T08:58:25Z) - Biologically inspired structure learning with reverse knowledge
distillation for spiking neural networks [19.33517163587031]
スパイキングニューラルネットワーク(SNN)は、その生物学的妥当性から感覚情報認識タスクにおいて非常に優れた特徴を持つ。
現在のスパイクベースのモデルの性能は、完全に接続された構造か深すぎる構造かによって制限されている。
本稿では,より合理的なSNNを構築するための進化的構造構築法を提案する。
論文 参考訳(メタデータ) (2023-04-19T08:41:17Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
我々は、ニューラルネットワークに事前論理的知識を注入するニューラルネットワークアーキテクチャであるKENNに焦点を当てる。
本稿では,関係データに対するKENNの拡張を提案する。
論文 参考訳(メタデータ) (2022-05-31T13:00:34Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - BackEISNN: A Deep Spiking Neural Network with Adaptive Self-Feedback and
Balanced Excitatory-Inhibitory Neurons [8.956708722109415]
スパイクニューラルネットワーク(SNN)は離散スパイクを通して情報を伝達し、空間時間情報を処理するのによく機能する。
適応型自己フィードバックと平衡興奮性および抑制性ニューロン(BackEISNN)を用いた深部スパイクニューラルネットワークを提案する。
MNIST、FashionMNIST、N-MNISTのデータセットに対して、我々のモデルは最先端の性能を達成した。
論文 参考訳(メタデータ) (2021-05-27T08:38:31Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
関係データに対するKENNの拡張を提案する。
その結果、KENNは、存在関係データにおいても、基礎となるニューラルネットワークの性能を高めることができることがわかった。
論文 参考訳(メタデータ) (2020-09-13T21:12:20Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。