Quantum modulation of a coherent state wavepacket with a single electron
spin
- URL: http://arxiv.org/abs/2207.05596v1
- Date: Tue, 12 Jul 2022 15:13:33 GMT
- Title: Quantum modulation of a coherent state wavepacket with a single electron
spin
- Authors: P. Androvitsaneas, A. B. Young, T. Nutz, J.M. Lennon, S. Mister, C.
Schneider, M. Kamp, S. H\"ofling, D. P. S. McCutcheon, E. Harbord, J. G.
Rarity, and R. Oulton
- Abstract summary: Photon-quantum-emitter interactions are among the most widely studied.
Two-qubit interactions are generally simplified into two quantum objects in static well-defined states.
We demonstrate modulation of a coherent narrowband wavepacket with another truly quantum object, a quantum dot with ground state spin degree of freedom.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interaction of quantum objects lies at the heart of fundamental quantum
physics and is key to a wide range of quantum information technologies.
Photon-quantum-emitter interactions are among the most widely studied.
Two-qubit interactions are generally simplified into two quantum objects in
static well-defined states . In this work we explore a fundamentally new
dynamic type of spin-photon interaction. We demonstrate modulation of a
coherent narrowband wavepacket with another truly quantum object, a quantum dot
with ground state spin degree of freedom. What results is a quantum modulation
of the wavepacket phase (either 0 or {\pi} but no values in between), a new
quantum state of light that cannot be described classically.
Related papers
- Quantum walks and entanglement in cavity networks [0.0]
We analyze the quantum properties of multipartite quantum systems, consisting of an arbitrarily large collection of optical cavities with two-level atoms.
We explore quantum walks in such systems and determine the resulting entanglement.
The topology of torus and the non-orientable M"obius strip serve as examples of complex networks we consider.
arXiv Detail & Related papers (2024-04-17T12:46:21Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
Single photons constitute a main platform in quantum science and technology.
Main challenge in quantum photonics is how to generate advanced entangled resource states and efficient light-matter interfaces.
We utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide for realizing quantum nonlinear interaction between single-photon wavepackets.
arXiv Detail & Related papers (2021-12-13T17:33:30Z) - Cooperative quantum phenomena in light-matter platforms [0.34376560669160383]
cooperativity is evident in light-matter platforms where quantum emitter ensembles are interfaced with confined optical modes.
This tutorial provides a set of theoretical tools to tackle the behavior responsible for the onset of cooperativity.
arXiv Detail & Related papers (2021-07-06T15:27:23Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Quantum amplification of boson-mediated interactions [0.0]
We experimentally demonstrate the amplification of a boson-mediated interaction between two trapped-ion qubits by parametric modulation of the trapping potential.
The technique can be used in any quantum platform where parametric modulation of the boson channel is possible.
arXiv Detail & Related papers (2020-09-29T23:22:55Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.