論文の概要: Logistics, Graphs, and Transformers: Towards improving Travel Time
Estimation
- arxiv url: http://arxiv.org/abs/2207.05835v1
- Date: Tue, 12 Jul 2022 20:59:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-15 04:52:39.851352
- Title: Logistics, Graphs, and Transformers: Towards improving Travel Time
Estimation
- Title(参考訳): ロジスティックス、グラフ、トランスフォーマー:旅行時間推定の改善を目指して
- Authors: Natalia Semenova, Vadim Porvatov, Vladislav Tishin, Artyom Sosedka,
Vladislav Zamkovoy
- Abstract要約: 本稿では,TransTTEアーキテクチャに基づく新しい手法を提案する。
道路の空間的側面と地中輸送の時間的ダイナミクスの間の相互接続の複雑な性質は、まだ実験すべき領域を保存している。
- 参考スコア(独自算出の注目度): 1.6578333442626008
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of travel time estimation is widely considered as the fundamental
challenge of modern logistics. The complex nature of interconnections between
spatial aspects of roads and temporal dynamics of ground transport still
preserves an area to experiment with. However, the total volume of currently
accumulated data encourages the construction of the learning models which have
the perspective to significantly outperform earlier solutions. In order to
address the problems of travel time estimation, we propose a new method based
on transformer architecture - TransTTE.
- Abstract(参考訳): 旅行時間推定の問題は、近代ロジスティクスの根本的な課題として広く考えられている。
道路の空間的側面と地上輸送の時間的ダイナミクスの間の相互接続の複雑な性質は、まだ実験する領域を保存している。
しかし、現在蓄積されているデータの合計量は、以前のソリューションを大幅に上回るという視点を持つ学習モデルの構築を促進する。
旅行時間推定の問題に対処するため,トランスフォーマーアーキテクチャーであるTransTTEに基づく新しい手法を提案する。
関連論文リスト
- XXLTraffic: Expanding and Extremely Long Traffic Dataset for Ultra-Dynamic Forecasting Challenges [3.7509821052818118]
XXLTrafficは、最も長いタイムパンとセンサーノード数の増加で利用可能な公開トラフィックデータセットである。
我々のデータセットは、既存の時間的データ資源を補完し、この領域における新しい研究の方向性につながる。
論文 参考訳(メタデータ) (2024-06-18T15:06:22Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
軌道計算は、位置サービス、都市交通、公共安全など、様々な実用用途において重要である。
トラジェクトリ・コンピューティングのためのディープラーニング(DL4Traj)の開発と最近の進歩について概観する。
特に、軌道計算を増強する可能性を持つ大規模言語モデル(LLM)の最近の進歩をカプセル化する。
論文 参考訳(メタデータ) (2024-03-21T05:57:27Z) - TransFlower: An Explainable Transformer-Based Model with Flow-to-Flow
Attention for Commuting Flow Prediction [18.232085070775835]
通勤パターンの予測にフロー・ツー・フロー・アテンションを用いた,説明可能なトランスフォーマーベースのモデルであるTransFlowerを紹介した。
我々のモデルは、既存の手法を最大30.8%のCommon Part of Commutersで上回ります。
論文 参考訳(メタデータ) (2024-02-23T16:00:04Z) - Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction [1.8531577178922987]
本稿では,ハイブリッドトランスフォーマーと自己教師型学習を組み合わせたモデルを提案する。
このモデルは、トラフィックのシーケンスレベルにデータ拡張技術を適用することにより、適応的なデータ拡張を強化する。
本研究では,時間的および空間的依存をモデル化する2つの自己教師型学習タスクを設計し,モデルの精度と能力を向上させる。
論文 参考訳(メタデータ) (2024-01-29T06:17:23Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - STAEformer: Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer
SOTA for Traffic Forecasting [10.875804648633832]
適応埋め込み(Adaptive Embedding)と呼ばれる,優れた利得を得られるコンポーネントを提案する。
実験により,本質的な時間的関係と情報トラフィック時系列を捉えることにより,適応的な埋め込みが交通予測において重要な役割を担っていることが示された。
論文 参考訳(メタデータ) (2023-08-21T02:27:13Z) - Building Transportation Foundation Model via Generative Graph
Transformer [12.660129805049664]
本稿では,交通シミュレーションの原理を交通予測に統合した交通基盤モデル(TFM)を提案する。
TFMは、移動系アクターの参加行動と相互作用を捉えるために、グラフ構造と動的グラフ生成アルゴリズムを使用する。
このデータ駆動・モデルフリーシミュレーション手法は、構造的複雑性とモデル精度の観点から、従来のシステムで直面する課題に対処する。
論文 参考訳(メタデータ) (2023-05-24T07:34:15Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。