論文の概要: Quantum Circuit Learning on NISQ Hardware
- arxiv url: http://arxiv.org/abs/2405.02069v1
- Date: Fri, 3 May 2024 13:00:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 12:55:53.298011
- Title: Quantum Circuit Learning on NISQ Hardware
- Title(参考訳): NISQハードウェアを用いた量子回路学習
- Authors: Niclas Schillo, Andreas Sturm,
- Abstract要約: 現在の量子コンピュータは小さく、エラーを起こしやすいシステムである。
フォールトトレラントな量子コンピュータは近い将来は利用できない。
我々は,IBM量子コンピュータ上で最大3キュービットのQCL回路が実行可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current quantum computers are small and error-prone systems for which the term noisy intermediate-scale quantum (NISQ) has become established. Since large scale, fault-tolerant quantum computers are not expected to be available in the near future, the task of finding NISQ suitable algorithms has received a lot of attention in recent years. The most prominent candidates in this context are variational quantum algorithms. Due to their hybrid quantum-classical architecture they require fewer qubits and quantum gates so that they can cope with the limitations of NISQ computers. An important class of variational quantum algorithms is the quantum circuit learning (QCL) framework. Consisting of a data encoding and a trainable, parametrized layer, these schemes implement a quantum model function that can be fitted to the problem at hand. For instance, in combination with the parameter shift rule to compute derivatives, they can be used to solve differential equations. QCL and related algorithms have been widely studied in the literature. However, numerical experiments are usually limited to simulators and results from real quantum computers are scarce. In this paper we close this gap by executing QCL circuits on a superconducting IBM quantum processor in conjunction with an analysis of the hardware errors. We show that exemplary QCL circuits with up to three qubits are executable on the IBM quantum computer. For this purpose, multiple functions are learned and an exemplary differential equation is solved on the quantum computer. Moreover, we present how the QCL framework can be used to learn different quantum model functions in parallel, which can be applied to solve coupled differential equations in an efficient way.
- Abstract(参考訳): 現在の量子コンピュータは、ノイズのある中間スケール量子(NISQ)という用語が確立された、小さく、エラーを起こしやすいシステムである。
大規模でフォールトトレラントな量子コンピュータが近日中に利用可能になることは期待できないため、近年、NISQに適したアルゴリズムを見つけるタスクが注目されている。
この文脈における最も顕著な候補は変分量子アルゴリズムである。
ハイブリッドな量子古典的アーキテクチャのため、NISQコンピュータの限界に対処できるように、量子ビットと量子ゲートを少なくする必要がある。
変分量子アルゴリズムの重要なクラスは量子回路学習(QCL)フレームワークである。
データエンコーディングとトレーニング可能なパラメトリゼーション層で構成され、これらのスキームは、手元にある問題に適合する量子モデル関数を実装している。
例えば、微分方程式を計算するためにパラメータシフト則と組み合わせることで、微分方程式を解くことができる。
QCLと関連するアルゴリズムは文献で広く研究されている。
しかし、数値実験は通常シミュレータに限られており、実際の量子コンピュータの結果は乏しい。
本稿では,超伝導IBM量子プロセッサ上でQCL回路を実行することにより,ハードウェアエラーの解析とともに,このギャップを埋める。
我々は,IBM量子コンピュータ上で最大3キュービットのQCL回路が実行可能であることを示す。
この目的のために、複数の関数が学習され、量子コンピュータ上で模範微分方程式が解かれる。
さらに、QCLフレームワークを用いて異なる量子モデル関数を並列に学習し、結合微分方程式を効率的に解ける方法を提案する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Towards Quantum Computational Mechanics [1.530480694206666]
本稿では、量子コンピューティングを用いて、計算ホモジェナイゼーションにおける代表要素体積(RVE)問題を解く方法について述べる。
我々の量子RVE解法は古典解法に対して指数加速度を得る。
論文 参考訳(メタデータ) (2023-12-06T12:53:02Z) - Variational Quantum Eigensolver for Classification in Credit Sales Risk [0.5524804393257919]
本稿では,変分量子固有解器(VQE)といわゆるSWAP-Testに基づく量子回路について考察する。
活用されたデータセットでは、2つのクラスが観察できる。
この解はコンパクトであり、対数的に増加するキュービット数だけを必要とする。
論文 参考訳(メタデータ) (2023-03-05T23:08:39Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Quantum Computing Quantum Monte Carlo [8.69884453265578]
量子コンピューティングと量子モンテカルロを統合したハイブリッド量子古典アルゴリズムを提案する。
我々の研究は、中間スケールおよび早期フォールト耐性量子コンピュータで現実的な問題を解決するための道を開いた。
論文 参考訳(メタデータ) (2022-06-21T14:26:24Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
計算量子化学の近似をゲートベースの量子コンピュータ上で分子化学をシミュレートする手法と組み合わせる。
基本集合を増大させるために解放された量子資源を用いることで、より正確な結果が得られ、必要な数の量子コンピューティングの実行が削減されることが示される。
論文 参考訳(メタデータ) (2020-01-31T19:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。