論文の概要: A comparison between PMBM Bayesian track initiation and labelled RFS
adaptive birth
- arxiv url: http://arxiv.org/abs/2207.06156v1
- Date: Wed, 13 Jul 2022 12:34:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-14 16:09:01.000106
- Title: A comparison between PMBM Bayesian track initiation and labelled RFS
adaptive birth
- Title(参考訳): PMBM Bayesian Track Initiation とラベル付き RFS Adaptive birth の比較
- Authors: \'Angel F. Garc\'ia-Fern\'andez, Yuxuan Xia, Lennart Svensson
- Abstract要約: 本稿では,ラベル付きランダム有限集合文学における適応出生モデルと,ポアソン多重ベルヌーリ混合フィルタにおけるトラック開始率の比較分析を行う。
- 参考スコア(独自算出の注目度): 4.664495510551647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper provides a comparative analysis between the adaptive birth model
used in the labelled random finite set literature and the track initiation in
the Poisson multi-Bernoulli mixture (PMBM) filter, with point-target models.
The PMBM track initiation is obtained via Bayes' rule applied on the predicted
PMBM density, and creates one Bernoulli component for each received
measurement, representing that this measurement may be clutter or a detection
from a new target. Adaptive birth mimics this procedure by creating a Bernoulli
component for each measurement using a different rule to determine the
probability of existence and a user-defined single-target density. This paper
first provides an analysis of the differences that arise in track initiation
based on isolated measurements. Then, it shows that adaptive birth
underestimates the number of objects present in the surveillance area under
common modelling assumptions. Finally, we provide numerical simulations to
further illustrate the differences.
- Abstract(参考訳): 本稿では,ラベル付きランダム有限集合文学において用いられる適応的出生モデルと,ポアソン・マルチベルヌーリ混合(PMBM)フィルタにおけるトラック開始とを,ポイントターゲットモデルを用いて比較解析する。
PMBMトラック開始は、予測されたPMBM密度にベイズの規則を適用して得られ、受信された各測定値に対して1つのベルヌーイ成分を生成し、この測定値が散逸または新しい目標からの検出であることを示す。
アダプティブ・バース(adaptive birth)は、異なる規則を用いて測定毎にベルヌーイ成分を作成し、存在確率とユーザ定義の単一目標密度を決定することで、この手順を模倣する。
本稿では,まず,孤立測定に基づく軌道開始時の相違点の解析を行う。
そして、適応出生は、共通のモデリング仮定の下で、監視領域に存在する物体の数を過小評価していることを示す。
最後に,この差異を説明するために数値シミュレーションを行う。
関連論文リスト
- Summarizing Bayesian Nonparametric Mixture Posterior -- Sliced Optimal Transport Metrics for Gaussian Mixtures [10.694077392690447]
混合モデルの後方推論を要約する既存の方法は、クラスタリングのための暗黙のランダムパーティションの点推定を同定することに焦点を当てている。
本研究では,非パラメトリックベイズ混合モデルにおける後部推論を要約し,混合度(または混合度)の密度推定を推論対象として優先順位付けする手法を提案する。
論文 参考訳(メタデータ) (2024-11-22T02:15:38Z) - Selecting the Number of Communities for Weighted Degree-Corrected Stochastic Block Models [5.117940794592611]
本研究では,重み付きネットワークのコミュニティ数を選択する方法を検討する。
本稿では, 平均隣接行列を標準DCSBMと同一にモデル化した新しい重み付き次数補正ブロックモデル(DCSBM)を提案する。
コミュニティ数を選択する方法は連続的なテストフレームワークに基づいており、各ステップで重み付けされたDCSBMをスペクトルクラスタリング法により取り付ける。
論文 参考訳(メタデータ) (2024-06-08T03:47:38Z) - Invariant Causal Prediction with Local Models [52.161513027831646]
観測データから対象変数の因果親を特定するタスクについて検討する。
L-ICP(textbfL$ocalized $textbfI$nvariant $textbfCa$usal $textbfP$rediction)と呼ばれる実用的手法を導入する。
論文 参考訳(メタデータ) (2024-01-10T15:34:42Z) - On the Properties and Estimation of Pointwise Mutual Information Profiles [49.877314063833296]
ポイントワイド相互情報プロファイル(ポイントワイド相互情報プロファイル、英: pointwise mutual information profile)は、与えられた確率変数のペアに対するポイントワイド相互情報の分布である。
そこで我々は,モンテカルロ法を用いて分布を正確に推定できる新しい分布系 Bend と Mix Models を導入する。
論文 参考訳(メタデータ) (2023-10-16T10:02:24Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Detecting Adversarial Data by Probing Multiple Perturbations Using
Expected Perturbation Score [62.54911162109439]
逆方向検出は、自然分布と逆方向分布の差に基づいて、与えられたサンプルが逆方向であるかどうかを判定することを目的としている。
本研究では,様々な摂動後の標本の予測スコアであるEPS(pre expected perturbation score)を提案する。
EPSに基づく最大平均誤差(MMD)を,試験試料と自然試料との差を測定する指標として開発する。
論文 参考訳(メタデータ) (2023-05-25T13:14:58Z) - A Bayesian Semiparametric Method For Estimating Causal Quantile Effects [1.1118668841431563]
擬似分布の任意の関数を推測できる半パラメトリックな条件分布回帰モデルを提案する。
共振調整に二重バランススコアを用いることで, 単一スコアのみの調整よりも性能が向上することを示す。
提案手法をノースカロライナ出生体重データセットに適用し,母体喫煙が幼児の出生体重に与える影響を解析した。
論文 参考訳(メタデータ) (2022-11-03T05:15:18Z) - Targeted Separation and Convergence with Kernel Discrepancies [61.973643031360254]
カーネルベースの不一致測度は、(i)ターゲットPを他の確率測度から分離するか、(ii)Pへの弱収束を制御する必要がある。
本稿では, (i) と (ii) を保証するのに十分な,必要な新しい条件を導出する。
可分距離空間上のMDDに対して、ボヒナー埋め込み可測度を分離するカーネルを特徴づけ、すべての測度を非有界カーネルと分離するための単純な条件を導入する。
論文 参考訳(メタデータ) (2022-09-26T16:41:16Z) - Estimation and inference for the Wasserstein distance between mixing measures in topic models [18.66039789963639]
混合測度間のワッサーシュタイン距離は混合モデルの統計解析において中心的な位置を占めるようになった。
この研究は、この距離の新しい標準解釈を提案し、トピックモデルにおけるワッサーシュタイン距離の推論を行うためのツールを提供する。
論文 参考訳(メタデータ) (2022-06-26T02:33:40Z) - Unified Perspective on Probability Divergence via Maximum Likelihood
Density Ratio Estimation: Bridging KL-Divergence and Integral Probability
Metrics [15.437224275494838]
KL分割とIPMはサンプリング方式によってのみ異なる最大確率で表せることを示す。
我々は、KL分割とIPMを補間する、密度比メートル法(DRM)と呼ばれる新しい確率分岐のクラスを提案する。
これらの知見に加えて、DREや生成的敵ネットワークといったDRMの応用についても紹介する。
論文 参考訳(メタデータ) (2022-01-31T11:15:04Z) - Generalized Sliced Distances for Probability Distributions [47.543990188697734]
我々は、一般化スライス確率測定(GSPM)と呼ばれる、幅広い確率測定値の族を紹介する。
GSPMは一般化されたラドン変換に根付いており、ユニークな幾何学的解釈を持つ。
GSPMに基づく勾配流を生成モデル応用に適用し、軽度な仮定の下では、勾配流が大域的最適に収束することを示す。
論文 参考訳(メタデータ) (2020-02-28T04:18:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。