論文の概要: Selecting the Number of Communities for Weighted Degree-Corrected Stochastic Block Models
- arxiv url: http://arxiv.org/abs/2406.05340v2
- Date: Tue, 08 Oct 2024 06:01:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 16:16:16.309451
- Title: Selecting the Number of Communities for Weighted Degree-Corrected Stochastic Block Models
- Title(参考訳): 重み付き重み補正確率ブロックモデルにおけるコミュニティ数の選択
- Authors: Yucheng Liu, Xiaodong Li,
- Abstract要約: 本研究では,重み付きネットワークのコミュニティ数を選択する方法を検討する。
本稿では, 平均隣接行列を標準DCSBMと同一にモデル化した新しい重み付き次数補正ブロックモデル(DCSBM)を提案する。
コミュニティ数を選択する方法は連続的なテストフレームワークに基づいており、各ステップで重み付けされたDCSBMをスペクトルクラスタリング法により取り付ける。
- 参考スコア(独自算出の注目度): 5.117940794592611
- License:
- Abstract: We investigate how to select the number of communities for weighted networks without a full likelihood modeling. First, we propose a novel weighted degree-corrected stochastic block model (DCSBM), in which the mean adjacency matrix is modeled as the same as in standard DCSBM, while the variance profile matrix is assumed to be related to the mean adjacency matrix through a given variance function. Our method of selecting the number of communities is based on a sequential testing framework, and in each step the weighted DCSBM is fitted via some spectral clustering method. A key step is to carry out matrix scaling on the estimated variance profile matrix. The resulting scaling factors can be used to normalize the adjacency matrix, from which the testing statistic is obtained. Under mild conditions on the weighted DCSBM, our proposed procedure is shown to be consistent in estimating the true number of communities. Numerical experiments on both simulated and real-world network data also demonstrate the desirable empirical properties of our method.
- Abstract(参考訳): 本研究では,重み付きネットワークのコミュニティ数を選択する方法を検討する。
まず, 平均隣接行列を標準DCSBMと同一にモデル化する重み付き次数補正確率ブロックモデル(DCSBM)を提案する。
コミュニティ数を選択する方法は連続的なテストフレームワークに基づいており、各ステップで重み付けされたDCSBMをスペクトルクラスタリング法により取り付ける。
重要なステップは、推定分散プロファイル行列上で行列スケーリングを実行することである。
得られたスケーリング係数は、テスト統計が得られた隣接行列の正規化に使用できる。
重み付きDCSBMの軽度条件下では,提案手法は真のコミュニティ数の推定に一貫性があることが示されている。
また,シミュレーションおよび実世界のネットワークデータの数値実験により,本手法の望ましい経験的特性を実証した。
関連論文リスト
- Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Large-scale gradient-based training of Mixtures of Factor Analyzers [67.21722742907981]
本稿では,勾配降下による高次元学習を効果的に行うための理論解析と新しい手法の両立に寄与する。
MFAトレーニングと推論/サンプリングは,学習終了後の行列逆変換を必要としない精度行列に基づいて行うことができることを示す。
理論解析と行列の他に,SVHNやMNISTなどの画像データセットにMFAを適用し,サンプル生成と外乱検出を行う能力を示す。
論文 参考訳(メタデータ) (2023-08-26T06:12:33Z) - Classification of BCI-EEG based on augmented covariance matrix [0.0]
本稿では,運動画像分類の改善を目的とした自己回帰モデルから抽出した拡張共分散に基づく新しいフレームワークを提案する。
私たちはMOABBフレームワークを使って、いくつかのデータセットといくつかの主題でアプローチを検証します。
論文 参考訳(メタデータ) (2023-02-09T09:04:25Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Simplex Clustering via sBeta with Applications to Online Adjustment of Black-Box Predictions [16.876111500144667]
我々はk-sBetasと呼ばれる新しい確率的クラスタリング手法を提案する。
クラスタリング分布の総括的最大アプリート(MAP)視点を提供する。
我々のコードと既存の単純なクラスタリング手法との比較および導入したソフトマックス予測ベンチマークが公開されている。
論文 参考訳(メタデータ) (2022-07-30T18:29:11Z) - A Quadrature Rule combining Control Variates and Adaptive Importance
Sampling [0.0]
モンテカルロ積分推定の精度を向上させるために, 単純重み付き最小二乗法が有効であることを示す。
我々の主な成果は、プロシージャの確率的誤差の非漸近的境界である。
この手法のよい振る舞いは、ベイズ線形回帰のための合成例と実世界のデータに実証的に説明される。
論文 参考訳(メタデータ) (2022-05-24T08:21:45Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
本稿ではランダム行列理論の手法を用いて、単純な線形回帰に対して理想的なトレーニング-テストデータ分割を求める。
それは「理想」を整合性計量を満たすものとして定義し、すなわち経験的モデル誤差は実際の測定ノイズである。
本論文は,任意のモデルのトレーニングとテストサイズを,真に最適な方法で解決した最初の論文である。
論文 参考訳(メタデータ) (2021-12-11T13:18:33Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) は、コミュニティ構造を持つランダムグラフを生成する一般的なモデルである。
DCSBMに基づくコミュニティ検出の標準的なアプローチは、最大推定(MLE)により観測されたネットワークデータを生成する可能性が最も高いモデルパラメータを探索することである。
本稿では,モデルパラメータと最大確率のコミュニティ割当を観測グラフから確実に求める数学的計画式と厳密解法を提案する。
論文 参考訳(メタデータ) (2021-01-26T22:04:40Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
我々は,ベイズクラスタリングモデルに対するMCMCアルゴリズムの出力を要約するための新しいアプローチを提案するために,後部類似性行列(PSM)の概念を構築した。
我々の研究の重要な貢献は、PSMが正の半定値であり、したがって確率的に動機付けられたカーネル行列を定義するのに使用できることである。
論文 参考訳(メタデータ) (2020-09-27T14:16:14Z) - Sparse Covariance Estimation in Logit Mixture Models [0.0]
本稿では,ロジット混合モデルにおけるランダム係数のスパース共分散行列を推定するための新しいデータ駆動手法を提案する。
我々の目的は、共分散を推定する相関係数の最適部分集合を見つけることである。
論文 参考訳(メタデータ) (2020-01-14T20:19:15Z) - Adaptive Correlated Monte Carlo for Contextual Categorical Sequence
Generation [77.7420231319632]
我々は,モンテカルロ (MC) ロールアウトの集合を分散制御のために評価する政策勾配推定器に,カテゴリー列の文脈的生成を適用する。
また,二分木ソフトマックスモデルに相関したMCロールアウトを用いることで,大語彙シナリオにおける高生成コストを低減できることを示す。
論文 参考訳(メタデータ) (2019-12-31T03:01:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。