論文の概要: Reachability Analysis of a General Class of Neural Ordinary Differential
Equations
- arxiv url: http://arxiv.org/abs/2207.06531v1
- Date: Wed, 13 Jul 2022 22:05:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-16 07:17:09.525987
- Title: Reachability Analysis of a General Class of Neural Ordinary Differential
Equations
- Title(参考訳): 神経常微分方程式の一般クラスの到達可能性解析
- Authors: Diego Manzanas Lopez, Patrick Musau, Nathaniel Hamilton, Taylor T.
Johnson
- Abstract要約: 連続的なディープラーニングモデル(Neural Ordinary Differential Equations (Neural ODEs)と呼ばれる)は、ここ数年でかなりの注目を集めている。
その衝撃にもかかわらず、これらのシステムには公式な分析技術が欠如している。
我々は,それらの行動の形式的分析を可能にする,新しい到達可能性フレームワークを導入する。
- 参考スコア(独自算出の注目度): 7.774796410415387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous deep learning models, referred to as Neural Ordinary Differential
Equations (Neural ODEs), have received considerable attention over the last
several years. Despite their burgeoning impact, there is a lack of formal
analysis techniques for these systems. In this paper, we consider a general
class of neural ODEs with varying architectures and layers, and introduce a
novel reachability framework that allows for the formal analysis of their
behavior. The methods developed for the reachability analysis of neural ODEs
are implemented in a new tool called NNVODE. Specifically, our work extends an
existing neural network verification tool to support neural ODEs. We
demonstrate the capabilities and efficacy of our methods through the analysis
of a set of benchmarks that include neural ODEs used for classification, and in
control and dynamical systems, including an evaluation of the efficacy and
capabilities of our approach with respect to existing software tools within the
continuous-time systems reachability literature, when it is possible to do so.
- Abstract(参考訳): 連続的なディープラーニングモデル(Neural Ordinary Differential Equations (Neural ODEs)と呼ばれる)は、ここ数年でかなりの注目を集めている。
その衝撃にもかかわらず、これらのシステムには正式な分析技術がない。
本稿では,様々なアーキテクチャと層を有するニューラルネットワークの一般クラスを検討し,その動作の形式的解析を可能にする新しい到達可能性フレームワークを提案する。
ニューラルネットワークの到達可能性解析のために開発された手法は、NNVODEと呼ばれる新しいツールで実装されている。
具体的には、既存のニューラルネットワーク検証ツールを拡張して、ニューラルODEをサポートする。
本手法の有効性と有効性は,分類や制御や力学システムで使用される神経odeを含むベンチマークセットの分析を通じて実証し,本手法の有効性と有効性について検討する。
関連論文リスト
- AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - A Mathematical Framework, a Taxonomy of Modeling Paradigms, and a Suite of Learning Techniques for Neural-Symbolic Systems [22.42431063362667]
本稿では,ニューラル・シンボリックエネルギーベースモデル(NeSy-EBMs)を紹介する。
我々はNeSy-EBMを用いて,システムのニューラルシンボリックインタフェースと推論機能に着目したモデリングパラダイムの分類法を開発した。
我々はまた、スケーラビリティと表現性のために設計されたオープンソースのNeSy-EBMライブラリNeuPSL(NeuPSL)についても紹介する。
論文 参考訳(メタデータ) (2024-07-12T21:26:21Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Embedding Capabilities of Neural ODEs [0.0]
動的システム理論を用いたニューラルODEの入出力関係について検討する。
我々は,低次元および高次元の異なるニューラルODEアーキテクチャにおける写像の正確な埋め込みについて,いくつかの結果を証明した。
論文 参考訳(メタデータ) (2023-08-02T15:16:34Z) - Standalone Neural ODEs with Sensitivity Analysis [5.565364597145569]
本稿では,完全深部ニューラルネットワークを記述可能な連続深部ニューラルネットワークモデルを提案する。
神経感受性問題の一般的な定式化を行い,NCGトレーニングでどのように使用されるかを示す。
我々の新しい定式化がResNetモデルと比較してロバスト性や性能の向上につながることを示す。
論文 参考訳(メタデータ) (2022-05-27T12:16:53Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - On the application of Physically-Guided Neural Networks with Internal
Variables to Continuum Problems [0.0]
内部変数を用いた物理誘導型ニューラルネットワーク(PGNNIV)を提案する。
普遍的な物理法則は、あるニューロンの値がシステムの内部状態変数として解釈されるように、ニューラルネットワークの制約として使用される。
これにより、ネットワークの容量が拡大するだけでなく、より高速な収束、少ないデータ要求、追加のノイズフィルタリングといった予測特性も向上する。
トレーニングセットで測定可能な値のみを用いることで,予測的かつ説明的能力を示すことによって,この新たな方法論を連続的な物理問題に拡張する。
論文 参考訳(メタデータ) (2020-11-23T13:06:52Z) - DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in
Continuous Control [0.0]
本稿では,ニューラル常微分方程式の枠組みに制御を組み込むことにより,システムの基盤となる力学を捉える新しい手法を提案する。
以上の結果から,アクター批判強化学習アルゴリズムと組み合わせた単純なDyNODEアーキテクチャが,標準ニューラルネットワークより優れていることが示唆された。
論文 参考訳(メタデータ) (2020-09-09T12:56:58Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。