論文の概要: AutoML-Based Drought Forecast with Meteorological Variables
- arxiv url: http://arxiv.org/abs/2207.07012v2
- Date: Tue, 23 Aug 2022 18:23:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-10 01:26:21.237911
- Title: AutoML-Based Drought Forecast with Meteorological Variables
- Title(参考訳): 気象変動を考慮したオートMLによる干ばつ予測
- Authors: Shiheng Duan and Xiurui Zhang
- Abstract要約: 本稿では,米国における干ばつ予測のためのAutoMLベースのフレームワークについて検討する。
深層学習モデルが地球系のモデリングに普及しつつある中で,本論文はAutoMLベースの手法にさらなる取り組みをもたらすことを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A precise forecast for droughts is of considerable value to scientific
research, agriculture, and water resource management. With emerging
developments of data-driven approaches for hydro-climate modeling, this paper
investigates an AutoML-based framework to forecast droughts in the U.S.
Compared with commonly-used temporal deep learning models, the AutoML model can
achieve comparable performance with less training data and time. As deep
learning models are becoming popular for Earth system modeling, this paper aims
to bring more efforts to AutoML-based methods, and the use of them as benchmark
baselines for more complex deep learning models.
- Abstract(参考訳): 干ばつに関する正確な予測は科学研究、農業、水資源管理にとってかなりの価値がある。
本稿では,水気候モデルのためのデータ駆動型アプローチの新たな展開を通じて,米国における干ばつを予測するためのautomlベースのフレームワークについて検討する。
深層学習モデルが地球系のモデリングに普及しつつある中で,本論文は,AutoMLベースの手法にさらなる取り組みをもたらし,より複雑な深層学習モデルのベンチマークベースラインとして利用することを目的としている。
関連論文リスト
- Evaluating Deep Learning Approaches for Predictions in Unmonitored Basins with Continental-scale Stream Temperature Models [1.8067095934521364]
最近の機械学習(ML)モデルは、大規模な空間スケールでの正確な予測に膨大なデータセットを利用することができる。
本研究では,モデル設計とインプットに必要なデータ,および性能向上のためのトレーニングについて考察する。
論文 参考訳(メタデータ) (2024-10-23T15:36:59Z) - Approaches for enhancing extrapolability in process-based and data-driven models in hydrology [0.16735447464058464]
本稿では,プロセスベースおよびデータ駆動型水文モデルにおける外挿可能性の評価・向上手法をレビューし,比較する。
主要な戦略は、未ゲージ領域におけるモデルパフォーマンスを評価するために、残余のクロスバリデーションと類似性に基づく手法の使用である。
ディープラーニング、トランスファーラーニング、ドメイン適応技術も、データスパースおよび極端な条件下でモデル予測を改善する可能性を約束している。
論文 参考訳(メタデータ) (2024-08-13T17:59:24Z) - Methods to improve run time of hydrologic models: opportunities and challenges in the machine learning era [0.0]
機械学習(ML)を水理モデルに応用することは、未熟である。
物理ベースのモデルよりもMLアルゴリズムを採用する主な理由の1つは、計算効率の優位性と様々なデータセットを扱う柔軟性である。
本稿では,水文モデルにMLを採用する機会と課題について述べる。その後,物理モデルによるシミュレーション時間の改善と今後の課題について述べる。
論文 参考訳(メタデータ) (2024-08-05T05:27:19Z) - Hybrid Optical Turbulence Models Using Machine Learning and Local
Measurements [0.0]
局所的な環境下での光乱流を予測するための機械学習情報ハイブリッドモデルフレームワークを開発した。
ベースラインのマクロ気象モデルと局所観測を組み合わせることで,各ベースラインモデルの予測能力を改善するためにハイブリッドモデルを訓練した。
本モデルでは, 平均絶対誤差(MAE)を約29%低減し, 平均絶対誤差(MAE)を1日分の観測で測定した。
論文 参考訳(メタデータ) (2023-10-27T00:41:55Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Comparison between ARIMA and Deep Learning Models for Temperature
Forecasting [0.0]
本稿では,ARIMA(Auto Regressive Integrated Average)モデルとディープラーニングモデルを比較し,温度を推定する。
実験結果によると,ディープラーニングモデルは従来のARIMA手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-11-09T14:21:46Z) - Fast, Accurate, and Simple Models for Tabular Data via Augmented
Distillation [97.42894942391575]
本研究では、FAST-DADを用いて、任意の複雑なアンサンブル予測を、高木、無作為林、深層ネットワークなどの個々のモデルに抽出する。
我々の個々の蒸留モデルは、H2O/AutoSklearnのようなAutoMLツールが生成するアンサンブル予測よりも10倍高速で精度が高い。
論文 参考訳(メタデータ) (2020-06-25T09:57:47Z) - Model Reuse with Reduced Kernel Mean Embedding Specification [70.044322798187]
現在のアプリケーションで有用なモデルを見つけるための2段階のフレームワークを提案する。
アップロードフェーズでは、モデルがプールにアップロードされている場合、モデルの仕様としてカーネル平均埋め込み(RKME)を縮小する。
デプロイフェーズでは、RKME仕様の値に基づいて、現在のタスクと事前訓練されたモデルの関連性を測定する。
論文 参考訳(メタデータ) (2020-01-20T15:15:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。