論文の概要: Single Model Uncertainty Estimation via Stochastic Data Centering
- arxiv url: http://arxiv.org/abs/2207.07235v1
- Date: Thu, 14 Jul 2022 23:54:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-18 22:54:57.807353
- Title: Single Model Uncertainty Estimation via Stochastic Data Centering
- Title(参考訳): 確率データ中心化による単一モデル不確かさ推定
- Authors: Jayaraman J. Thiagarajan, Rushil Anirudh, Vivek Narayanaswamy and
Peer-Timo Bremer
- Abstract要約: 私たちは、ディープニューラルネットワークの不確実性を見積もることに興味があります。
我々は、一定のバイアスによってシフトしたデータセットに基づいてトレーニングされた、同じ重み付きニューラルネットワークのアンサンブルが、わずかに一貫性のないトレーニングモデルを引き起こすという驚くべき新しい発見を提示する。
我々は、$Delta-$UQの不確実性推定が、様々なベンチマークにおける現在の多くの手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 39.71621297447397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We are interested in estimating the uncertainties of deep neural networks,
which play an important role in many scientific and engineering problems. In
this paper, we present a striking new finding that an ensemble of neural
networks with the same weight initialization, trained on datasets that are
shifted by a constant bias gives rise to slightly inconsistent trained models,
where the differences in predictions are a strong indicator of epistemic
uncertainties. Using the neural tangent kernel (NTK), we demonstrate that this
phenomena occurs in part because the NTK is not shift-invariant. Since this is
achieved via a trivial input transformation, we show that it can therefore be
approximated using just a single neural network -- using a technique that we
call $\Delta-$UQ -- that estimates uncertainty around prediction by
marginalizing out the effect of the biases. We show that $\Delta-$UQ's
uncertainty estimates are superior to many of the current methods on a variety
of benchmarks -- outlier rejection, calibration under distribution shift, and
sequential design optimization of black box functions.
- Abstract(参考訳): 我々は、多くの科学的・工学的問題において重要な役割を果たす深層ニューラルネットワークの不確実性の推定に興味を持っている。
本稿では,同じ重みの初期化を持つニューラルネットワークのアンサンブルが,一定のバイアスによって変化するデータセットに基づいてトレーニングされた場合,予測の相違が認識論的不確実性の強い指標となるような,わずかに一貫性のないトレーニングモデルをもたらすという新たな発見を提案する。
ニューラルタンジェントカーネル(NTK)を用いて、NTKはシフト不変ではないため、この現象が部分的に生じることを示した。
これは自明な入力変換によって達成されるため、バイアスの影響を限界にすることで予測に関する不確実性を推定する、単一のニューラルネットワーク($\delta-$uqと呼ばれる技術)を使って近似することができる。
我々は、$\delta-$uqの不確実性推定が、アウトリーバー拒否、分配シフトによるキャリブレーション、ブラックボックス関数の逐次設計最適化といった、様々なベンチマークにおいて、現在の多くの方法よりも優れていることを示す。
関連論文リスト
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
不確実性定量化は機械学習において重要な課題である。
本稿では,BLL を用いた NN の対数乗算可能性の再構成を行い,バックプロパゲーションを用いた効率的なトレーニングを実現する。
論文 参考訳(メタデータ) (2023-02-21T20:23:56Z) - Bayesian Neural Network Versus Ex-Post Calibration For Prediction
Uncertainty [0.2343856409260935]
ニューラルネットワークからの確率的予測は、分類中の予測の不確実性の原因となる。
実際には、ほとんどのデータセットは非確率的ニューラルネットワークでトレーニングされています。
キャリブレーションアプローチのもっともらしい代替手段は、予測分布を直接モデル化するベイズニューラルネットワークを使用することである。
論文 参考訳(メタデータ) (2022-09-29T07:22:19Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - A heteroencoder architecture for prediction of failure locations in
porous metals using variational inference [1.2722697496405462]
多孔質金属張力試験片の故障箇所を予測するために,エンコーダ・デコーダ畳み込みニューラルネットワークを用いた。
故障箇所の予測の目的は、標本中のほとんどの材料が故障しないため、クラス不均衡の極端なケースを示す。
得られた予測分散は、任意の標本において最も失敗する可能性のある位置のランク付けに有効であることを示す。
論文 参考訳(メタデータ) (2022-01-31T20:26:53Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。