論文の概要: Multi-Object Tracking and Segmentation via Neural Message Passing
- arxiv url: http://arxiv.org/abs/2207.07454v1
- Date: Fri, 15 Jul 2022 13:03:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-18 18:56:37.111732
- Title: Multi-Object Tracking and Segmentation via Neural Message Passing
- Title(参考訳): ニューラルメッセージパッシングによるマルチオブジェクト追跡とセグメンテーション
- Authors: Guillem Braso, Orcun Cetintas, Laura Leal-Taixe
- Abstract要約: グラフは、Multiple Object Tracking (MOT) とMultiple Object Tracking (MOTS) を定式化する自然な方法を提供する。
我々は、メッセージパッシングネットワーク(MPN)に基づく、完全に差別化可能なフレームワークを定義するために、MOTの古典的なネットワークフロー定式化を利用する。
いくつかの公開データセットにおけるトラッキングとセグメンテーションの両面での最先端の結果が得られます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs offer a natural way to formulate Multiple Object Tracking (MOT) and
Multiple Object Tracking and Segmentation (MOTS) within the
tracking-by-detection paradigm. However, they also introduce a major challenge
for learning methods, as defining a model that can operate on such structured
domain is not trivial. In this work, we exploit the classical network flow
formulation of MOT to define a fully differentiable framework based on Message
Passing Networks (MPNs). By operating directly on the graph domain, our method
can reason globally over an entire set of detections and exploit contextual
features. It then jointly predicts both final solutions for the data
association problem and segmentation masks for all objects in the scene while
exploiting synergies between the two tasks. We achieve state-of-the-art results
for both tracking and segmentation in several publicly available datasets. Our
code is available at github.com/ocetintas/MPNTrackSeg.
- Abstract(参考訳): グラフは、トラッキング・バイ・検出パラダイムの中で、MOT(Multiple Object Tracking)とMOTS(Multiple Object Tracking and Segmentation)を定式化する自然な方法を提供する。
しかし、そのような構造化ドメイン上で動作可能なモデルを定義することは自明ではないため、学習方法に対する大きなチャレンジも導入している。
本研究では、モットの古典的なネットワークフロー定式化を利用して、メッセージパッシングネットワーク(mpns)に基づく完全微分可能なフレームワークを定義する。
グラフドメイン上で直接操作することで、検出の集合全体にわたってグローバルに推論し、コンテキスト的特徴を活用することができる。
そして、2つのタスク間の相乗効果を利用して、データアソシエーション問題の最終解とシーン内のすべてのオブジェクトのセグメンテーションマスクの両方を共同で予測する。
いくつかの公開データセットにおけるトラッキングとセグメンテーションの両面での最先端の結果が得られます。
私たちのコードはgithub.com/ocetintas/MPNTrackSegで利用可能です。
関連論文リスト
- Matching Anything by Segmenting Anything [109.2507425045143]
我々は、堅牢なインスタンスアソシエーション学習のための新しい手法であるMASAを提案する。
MASAは、徹底的なデータ変換を通じてインスタンスレベルの対応を学習する。
完全アノテートされたドメイン内ビデオシーケンスでトレーニングした最先端の手法よりも,MASAの方が優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-06-06T16:20:07Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
マルチオブジェクトトラッキング(MOT)は、時間とともにシーン内のオブジェクトの位置、外観、アイデンティティを同時に推論する必要がある課題である。
本研究の目的は、トラッキング・バイ・ディテクト・アプローチを超えて、未知のオブジェクト・クラスに対してもよく機能するクラスに依存しないトラッキングへと移行することである。
論文 参考訳(メタデータ) (2022-10-26T10:19:37Z) - BURST: A Benchmark for Unifying Object Recognition, Segmentation and
Tracking in Video [58.71785546245467]
複数の既存のベンチマークには、ビデオ内のオブジェクトのトラッキングとセグメンテーションが含まれる。
異なるベンチマークデータセットとメトリクスを使用するため、それらの相互作用はほとんどありません。
高品質なオブジェクトマスクを備えた数千の多様なビデオを含むデータセットであるBURSTを提案する。
すべてのタスクは、同じデータと同等のメトリクスを使って評価されます。
論文 参考訳(メタデータ) (2022-09-25T01:27:35Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
異なるシナリオにおけるトラッキング問題に1つのパラダイムで対処するために,UTT(Unified Transformer Tracker)を提案する。
SOT(Single Object Tracking)とMOT(Multiple Object Tracking)の両方を対象とするトラックトランスフォーマーを開発した。
論文 参考訳(メタデータ) (2022-03-29T01:38:49Z) - Prototypical Cross-Attention Networks for Multiple Object Tracking and
Segmentation [95.74244714914052]
複数のオブジェクトのトラッキングとセグメンテーションには、与えられたクラスのセットに属するオブジェクトを検出し、追跡し、セグメンテーションする必要がある。
オンライン上でリッチ・テンポラル情報を活用するプロトタイプ・クロス・アテンション・ネットワーク(PCAN)を提案する。
PCANは、Youtube-VISとBDD100Kデータセットで、現在のビデオインスタンス追跡とセグメンテーションコンテストの勝者を上回っている。
論文 参考訳(メタデータ) (2021-06-22T17:57:24Z) - Target-Aware Object Discovery and Association for Unsupervised Video
Multi-Object Segmentation [79.6596425920849]
本稿では,教師なしビデオマルチオブジェクトセグメンテーションの課題について述べる。
より正確で効率的な時間区分のための新しいアプローチを紹介します。
DAVIS$_17$とYouTube-VISに対する提案手法を評価した結果,セグメント化精度と推論速度の両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-04-10T14:39:44Z) - Global Correlation Network: End-to-End Joint Multi-Object Detection and
Tracking [2.749204052800622]
本稿では,global correlation network (gcnet) という,エンドツーエンドでマルチオブジェクト検出と追跡を行うネットワークを提案する。
gcnetはオフセット予測の代わりに絶対サイズと境界ボックスの座標の回帰のためにグローバル相関層を導入する。
GCNetによる検出と追跡のパイプラインは概念的にはシンプルで、非最大抑制、データアソシエーション、その他の複雑な追跡戦略を必要としない。
論文 参考訳(メタデータ) (2021-03-23T13:16:42Z) - End-to-End Multi-Object Tracking with Global Response Map [23.755882375664875]
画像シーケンス/映像を入力とし、学習対象の位置と追跡対象を直接出力する、完全にエンドツーエンドのアプローチを提案する。
具体的には,提案した多目的表現戦略により,グローバル応答マップをフレーム上で正確に生成することができる。
MOT16 と MOT17 のベンチマークによる実験結果から,提案したオンライントラッカーは,いくつかのトラッキング指標において最先端の性能を達成した。
論文 参考訳(メタデータ) (2020-07-13T12:30:49Z) - Joint Object Detection and Multi-Object Tracking with Graph Neural
Networks [32.1359455541169]
グラフニューラルネットワーク(GNN)に基づく共同MOT手法の新たな例を提案する。
我々は,GNNベースの共同MOT手法の有効性を示し,検出タスクとMOTタスクの両方に対して最先端の性能を示す。
論文 参考訳(メタデータ) (2020-06-23T17:07:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。