論文の概要: Digital twin brain: a bridge between biological intelligence and
artificial intelligence
- arxiv url: http://arxiv.org/abs/2308.01941v1
- Date: Thu, 3 Aug 2023 03:36:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 15:02:02.178734
- Title: Digital twin brain: a bridge between biological intelligence and
artificial intelligence
- Title(参考訳): デジタル双生児脳:生物学的知性と人工知能の橋渡し
- Authors: Hui Xiong, Congying Chu, Lingzhong Fan, Ming Song, Jiaqi Zhang, Yawei
Ma, Ruonan Zheng, Junyang Zhang, Zhengyi Yang, Tianzi Jiang
- Abstract要約: 本稿では,生物と人工知能のギャップを埋めるトランスフォーメーションプラットフォームとして,Digital Twin Brain(DTB)を提案する。
DTBは、ツインニング過程の基本となる脳構造、脳機能を生成する底層モデル、幅広い応用の3つの中核要素から構成される。
- 参考スコア(独自算出の注目度): 12.55159053727258
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, advances in neuroscience and artificial intelligence have
paved the way for unprecedented opportunities for understanding the complexity
of the brain and its emulation by computational systems. Cutting-edge
advancements in neuroscience research have revealed the intricate relationship
between brain structure and function, while the success of artificial neural
networks highlights the importance of network architecture. Now is the time to
bring them together to better unravel how intelligence emerges from the brain's
multiscale repositories. In this review, we propose the Digital Twin Brain
(DTB) as a transformative platform that bridges the gap between biological and
artificial intelligence. It consists of three core elements: the brain
structure that is fundamental to the twinning process, bottom-layer models to
generate brain functions, and its wide spectrum of applications. Crucially,
brain atlases provide a vital constraint, preserving the brain's network
organization within the DTB. Furthermore, we highlight open questions that
invite joint efforts from interdisciplinary fields and emphasize the
far-reaching implications of the DTB. The DTB can offer unprecedented insights
into the emergence of intelligence and neurological disorders, which holds
tremendous promise for advancing our understanding of both biological and
artificial intelligence, and ultimately propelling the development of
artificial general intelligence and facilitating precision mental healthcare.
- Abstract(参考訳): 近年、神経科学と人工知能の進歩は、脳の複雑さと計算システムによるエミュレーションを理解する前例のない機会の道を開いた。
神経科学研究における最先端の進歩は、脳の構造と機能の間の複雑な関係を明らかにし、ニューラルネットワークの成功はネットワークアーキテクチャの重要性を強調している。
今こそ、それらをまとめて、脳のマルチスケールリポジトリからインテリジェンスがどのように現れるかを明らかにする時だ。
本稿では,生物と人工知能のギャップを埋めるトランスフォーメーションプラットフォームとして,Digital Twin Brain(DTB)を提案する。
ツインニングプロセスの基本となる脳構造、脳機能を生成するボトム層モデル、幅広い応用範囲の3つのコア要素で構成されている。
重要なことに、脳のアトラスは、DTB内の脳のネットワーク組織を保ち、重要な制約を提供する。
さらに,学際的分野からの協力を呼びかけるオープン質問を取り上げ,dtbの広範な意味を強調する。
dtbは、生物学的および人工知能の両方の理解を前進させ、最終的には人工知能の開発を促進し、精密な精神医療を促進するという大きな可能性を秘めている、知性と神経障害の出現に関する前例のない洞察を提供することができる。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
本論は,神経科学と認知心理学の手法を検討することによって,人工知能の探求に貢献することを目的とする。
深層学習モデルによって達成された印象的な進歩にもかかわらず、抽象的推論と因果的理解にはまだ欠点がある。
論文 参考訳(メタデータ) (2024-01-03T09:46:36Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Digital Twin Brain: a simulation and assimilation platform for whole
human brain [14.320205840701226]
我々は、人間の脳全体のスパイク神経ネットワークをシミュレートできるDTB(Digital twin brain)という計算プラットフォームを提案する。
均質なグローバル構造を持つほとんどの脳シミュレーションと比較して、脳のsMRI、DTI、PETデータにおけるスパース性、結合性、異種性は、脳シミュレーションの効率に重要な影響を与える。
論文 参考訳(メタデータ) (2023-08-02T15:56:43Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
脳ディフューザー(Brain diffuser)は、拡散に基づくエンド・ツー・エンドの脳ネットワーク生成モデルである。
被験者間の構造的脳ネットワークの差異を分析することで、より構造的接続性や疾患関連情報を利用する。
アルツハイマー病の場合、提案モデルは、アルツハイマー病神経画像イニシアチブデータベース上の既存のツールキットの結果より優れている。
論文 参考訳(メタデータ) (2023-03-11T14:04:58Z) - In the realm of hybrid Brain: Human Brain and AI [0.0]
現在の脳-コンピュータインターフェース(BCI)技術は主に治療結果に関するものである。
近年,脳信号のデコードには人工知能(AI)と機械学習(ML)技術が用いられている。
クローズドループ,インテリジェント,低消費電力,小型化されたニューラルインターフェースの開発を想定する。
論文 参考訳(メタデータ) (2022-10-04T08:35:34Z) - An Introductory Review of Spiking Neural Network and Artificial Neural
Network: From Biological Intelligence to Artificial Intelligence [4.697611383288171]
生物学的解釈可能性を持つスパイクニューラルネットワークは、徐々に注目を集めている。
このレビューは、さまざまな研究者を惹きつけ、脳にインスパイアされた知性と人工知能の開発を進めたいと考えている。
論文 参考訳(メタデータ) (2022-04-09T09:34:34Z) - To Root Artificial Intelligence Deeply in Basic Science for a New
Generation of AI [1.0152838128195467]
人工知能の野望の1つは、人工知能を基礎科学に深く根ざすことである。
本稿では,今後20年間の人工知能研究の課題について述べる。
論文 参考訳(メタデータ) (2020-09-11T22:38:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。