論文の概要: An Enhanced Graph Representation for Machine Learning Based Automatic
Intersection Management
- arxiv url: http://arxiv.org/abs/2207.08655v1
- Date: Mon, 18 Jul 2022 14:53:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-19 19:16:14.648590
- Title: An Enhanced Graph Representation for Machine Learning Based Automatic
Intersection Management
- Title(参考訳): 自動交差点管理に基づく機械学習のための拡張グラフ表現
- Authors: Marvin Klimke, Jasper Gerigk, Benjamin V\"olz, Michael Buchholz
- Abstract要約: 我々は、前述したグラフベースのシーン表現とグラフニューラルネットワークに基づいて、強化学習を用いてこの問題にアプローチする。
本稿では,自動交差点管理において一般的に使用されるベースラインに対して,提案手法の詳細な評価を行う。
- 参考スコア(独自算出の注目度): 0.5161531917413708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The improvement of traffic efficiency at urban intersections receives strong
research interest in the field of automated intersection management. So far,
mostly non-learning algorithms like reservation or optimization-based ones were
proposed to solve the underlying multi-agent planning problem. At the same
time, automated driving functions for a single ego vehicle are increasingly
implemented using machine learning methods. In this work, we build upon a
previously presented graph-based scene representation and graph neural network
to approach the problem using reinforcement learning. The scene representation
is improved in key aspects by using edge features in addition to the existing
node features for the vehicles. This leads to an increased representation
quality that is leveraged by an updated network architecture. The paper
provides an in-depth evaluation of the proposed method against baselines that
are commonly used in automatic intersection management. Compared to a
traditional signalized intersection and an enhanced first-in-first-out scheme,
a significant reduction of induced delay is observed at varying traffic
densities. Finally, the generalization capability of the graph-based
representation is evaluated by testing the policy on intersection layouts not
seen during training. The model generalizes virtually without restrictions to
smaller intersection layouts and within certain limits to larger ones.
- Abstract(参考訳): 都市交差点における交通効率の向上は, 自動交差点管理の分野において, 強い研究関心を集めている。
これまでのところ、基礎となるマルチエージェント計画問題を解決するために、reservationやoptimize-basedといった非学習アルゴリズムが提案されている。
同時に、単一のego車両の自動運転機能が機械学習手法で実装されるようになっている。
本研究では,前述したグラフベースシーン表現とグラフニューラルネットワークに基づいて,強化学習を用いて問題にアプローチする。
車両の既存のノード機能に加えてエッジ機能を使用することで、シーン表現が重要な面で改善される。
これにより、ネットワークアーキテクチャの更新によって、表現品質が向上する。
本稿では,自動交差点管理において一般的に使用されるベースラインに対する提案手法の詳細な評価を行う。
従来の信号化交差点と拡張されたファースト・イン・ファースト・アウト・スキームと比較すると,様々な交通密度で遅延の顕著な低減が観察される。
最後に、グラフに基づく表現の一般化能力は、トレーニング中に見えない交差点レイアウトのポリシーをテストすることによって評価される。
このモデルは、小さな交差点のレイアウトや、より大きなものへの特定の制限に制限なく、事実上一般化する。
関連論文リスト
- GASE: Graph Attention Sampling with Edges Fusion for Solving Vehicle Routing Problems [6.084414764415137]
車両のルーティング問題を解決するためにEdges Fusionフレームワークを用いた適応型グラフ注意サンプリングを提案する。
提案手法は,既存の手法を2.08%-6.23%上回り,より強力な一般化能力を示す。
論文 参考訳(メタデータ) (2024-05-21T03:33:07Z) - Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
交通信号制御システム(TSCS)は、インテリジェントな交通管理に不可欠なものであり、効率的な車両の流れを育んでいる。
従来のアプローチでは、道路網を標準的なグラフに単純化することが多い。
本稿では,インテリジェントトラフィック制御を実現するための新しいTSCSフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T02:46:18Z) - Automatic Intersection Management in Mixed Traffic Using Reinforcement
Learning and Graph Neural Networks [0.5801044612920815]
接続された自動運転は、都市交通効率を大幅に改善する可能性がある。
協調行動計画(cooperative behavior planning)は、複数の車両の動作を協調的に最適化するために用いられる。
本研究は,協調型マルチエージェント計画における強化学習とグラフに基づくシーン表現を活用することを提案する。
論文 参考訳(メタデータ) (2023-01-30T08:21:18Z) - LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction [70.31656245793302]
格子ハイパーグラフ(格子ハイパーグラフ)は、回路のための新しいグラフ定式化である。
LHNNは、F1スコアのU-netやPix2Pixと比べて、35%以上の改善を常に達成している。
論文 参考訳(メタデータ) (2022-03-24T03:31:18Z) - Cooperative Behavioral Planning for Automated Driving using Graph Neural
Networks [0.5801044612920815]
本研究は,複数の車両を共同で計画することで,都市交差点における交通流の最適化に機械学習アルゴリズムを活用することを提案する。
学習に基づく行動計画にはいくつかの課題が伴い、適切な入力と出力の表現と大量の基幹データを要求する。
自動運転における意思決定のためのオープンソースのシミュレーション環境において,提案手法を訓練し,評価する。
論文 参考訳(メタデータ) (2022-02-23T09:36:15Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
本稿では,空間時間グラフモデリングと長期交通予測のための新しいモデルであるTraffic Transformerを提案する。
Transformerは自然言語処理(NLP)で最も人気のあるフレームワークです。
注目重量行列を解析すれば 道路網の 影響力のある部分を見つけられる 交通網をよりよく学べる
論文 参考訳(メタデータ) (2021-04-12T02:29:58Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
疎結合グラフの学習値に基づいてマルチエージェントルーティングを行うことができるグラフニューラルネットワークに基づくモデルを提案する。
最大25ノードのグラフ上で2つのエージェントでトレーニングしたモデルでは,より多くのエージェントやノードを持つ状況に容易に一般化できることが示されている。
論文 参考訳(メタデータ) (2020-07-09T22:16:45Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。