論文の概要: Optimizing Indoor Navigation Policies For Spatial Distancing
- arxiv url: http://arxiv.org/abs/2207.08860v1
- Date: Sat, 4 Jun 2022 21:57:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-10 17:52:24.022876
- Title: Optimizing Indoor Navigation Policies For Spatial Distancing
- Title(参考訳): 空間ディスタンシングのための屋内ナビゲーションポリシーの最適化
- Authors: Xun Zhang, Mathew Schwartz, Muhammad Usman, Petros Faloutsos, Mubbasir
Kapadia
- Abstract要約: 本稿では,住民の移動パターンや方向指示に繋がる政策の変更に焦点をあてる。
本フレームワークでは,エージェント間の空間的距離の分散を改善するために,シミュレーション最適化プロセスが有効であることを示す。
- 参考スコア(独自算出の注目度): 8.635212273689273
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we focus on the modification of policies that can lead to
movement patterns and directional guidance of occupants, which are represented
as agents in a 3D simulation engine. We demonstrate an optimization method that
improves a spatial distancing metric by modifying the navigation graph by
introducing a measure of spatial distancing of agents as a function of agent
density (i.e., occupancy). Our optimization framework utilizes such metrics as
the target function, using a hybrid approach of combining genetic algorithm and
simulated annealing. We show that within our framework, the
simulation-optimization process can help to improve spatial distancing between
agents by optimizing the navigation policies for a given indoor environment.
- Abstract(参考訳): 本稿では,3次元シミュレーションエンジンのエージェントとして表現される,移動パターンや乗員の方向案内につながるポリシの修正に着目する。
エージェント密度(すなわち占有率)の関数としてエージェントの空間的分散度尺度を導入することにより,ナビゲーショングラフを変更することにより空間分散度を改善できる最適化手法を示す。
この最適化フレームワークは,遺伝的アルゴリズムとシミュレーションアニーリングを組み合わせたハイブリッド手法を用いて,対象関数としての指標を活用している。
提案手法では, 室内環境のナビゲーションポリシーを最適化することで, エージェント間の空間的距離差を改善することができることを示す。
関連論文リスト
- Co-Optimization of Environment and Policies for Decentralized Multi-Agent Navigation [14.533605727697775]
本研究は,マルチエージェントシステムとその周辺環境を,一方の行動が他方に影響を与える共進化システムとみなす。
本研究では,環境中におけるエージェント動作と障害物構成の最適解を求めるために,サブオブジェクト間を置換するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-03-21T17:37:43Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Acceleration in Policy Optimization [50.323182853069184]
我々は、楽観的かつ適応的な更新を通じて、政策改善のステップにフォレストを組み込むことにより、強化学習(RL)における政策最適化手法を加速するための統一パラダイムに向けて研究する。
我々は、楽観主義を、政策の将来行動の予測モデルとして定義し、適応性は、過度な予測や変化に対する遅延反応からエラーを軽減するために、即時かつ予測的な修正措置をとるものである。
我々は,メタグラディエント学習による適応型楽観的ポリシー勾配アルゴリズムを設計し,実証的なタスクにおいて,加速度に関連するいくつかの設計選択を実証的に強調する。
論文 参考訳(メタデータ) (2023-06-18T15:50:57Z) - Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies [0.0]
ポリシー最適化は、タスク固有の目的の関数としてロボットポリシーを適用するための、事実上のパラダイムである。
本稿では,最適輸送問題として政策最適化を適用することで,確率的政策の構造を活用することを提案する。
我々は,ロボットの動作の到達,衝突回避行動,マルチゴールタスクなど,一般的なロボット設定に対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-05-17T17:48:24Z) - Accelerated Federated Learning with Decoupled Adaptive Optimization [53.230515878096426]
フェデレートドラーニング(FL)フレームワークは、クライアント上のトレーニングデータのプライバシを維持しながら、共有モデルを協調的に学習することを可能にする。
近年,SGDM,Adam,AdaGradなどの集中型適応最適化手法をフェデレートした設定に一般化するためのイテレーションが多数実施されている。
本研究は、常微分方程式(ODE)のダイナミクスの観点から、FLの新しい適応最適化手法を開発することを目的としている。
論文 参考訳(メタデータ) (2022-07-14T22:46:43Z) - MetaAlign: Coordinating Domain Alignment and Classification for
Unsupervised Domain Adaptation [84.90801699807426]
本稿ではMetaAlignと呼ばれるメタ最適化に基づく効果的な戦略を提案する。
ドメインアライメントの目的と分類の目的をメタ学習計画におけるメタトレーニングとメタテストのタスクとして扱う。
実験結果は,アライメントに基づくベースラインアプローチを用いた提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2021-03-25T03:16:05Z) - Distributionally-Constrained Policy Optimization via Unbalanced Optimal
Transport [15.294456568539148]
入居対策の空間における不均衡な最適輸送として政策最適化を策定します。
Bregman発散に基づく汎用RL目標を提案し,Dykstraのアルゴリズムを用いて最適化する。
論文 参考訳(メタデータ) (2021-02-15T23:04:37Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
本稿では,動的無線ネットワーク環境で動作するエネルギー制約型ドローン群に対する軌道設計の問題点について検討する。
値ベース強化学習(VDRL)ソリューションとメタトレイン機構を提案する。
論文 参考訳(メタデータ) (2020-12-06T01:30:12Z) - Learning Task-Agnostic Action Spaces for Movement Optimization [18.37812596641983]
そこで本研究では,物理ベースのアニメーションキャラクターのダイナミクスを探索する新しい手法を提案する。
目標状態としてアクションをパラメータ化し、目標に向かってエージェントの状態を駆動する短水平目標条件の低レベル制御ポリシーを学習する。
論文 参考訳(メタデータ) (2020-09-22T06:18:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。