論文の概要: Riemannian Stochastic Gradient Method for Nested Composition
Optimization
- arxiv url: http://arxiv.org/abs/2207.09350v1
- Date: Tue, 19 Jul 2022 15:58:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 14:38:37.017514
- Title: Riemannian Stochastic Gradient Method for Nested Composition
Optimization
- Title(参考訳): ネスト合成最適化のためのリーマン確率勾配法
- Authors: Dewei Zhang and Sam Davanloo Tajbakhsh
- Abstract要約: この研究は、各函数が期待を含むリーマン多様体上のネスト形式の函数の構成の最適化を考える。
このような問題は、強化学習における政策評価やメタラーニングにおけるモデルカスタマイズといった応用において人気が高まっている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work considers optimization of composition of functions in a nested form
over Riemannian manifolds where each function contains an expectation. This
type of problems is gaining popularity in applications such as policy
evaluation in reinforcement learning or model customization in meta-learning.
The standard Riemannian stochastic gradient methods for non-compositional
optimization cannot be directly applied as stochastic approximation of inner
functions create bias in the gradients of the outer functions. For two-level
composition optimization, we present a Riemannian Stochastic Composition
Gradient Descent (R-SCGD) method that finds an approximate stationary point,
with expected squared Riemannian gradient smaller than $\epsilon$, in
$O(\epsilon^{-2})$ calls to the stochastic gradient oracle of the outer
function and stochastic function and gradient oracles of the inner function.
Furthermore, we generalize the R-SCGD algorithms for problems with multi-level
nested compositional structures, with the same complexity of $O(\epsilon^{-2})$
for the first-order stochastic oracle. Finally, the performance of the R-SCGD
method is numerically evaluated over a policy evaluation problem in
reinforcement learning.
- Abstract(参考訳): この研究は、各函数が期待を含むリーマン多様体上のネスト形式の函数の構成の最適化を考える。
このような問題は、強化学習における政策評価やメタ学習におけるモデルカスタマイズといった応用において人気が高まっている。
非結合最適化のための標準リーマン確率勾配法は、内部関数の確率近似が外部関数の勾配にバイアスを生じさせるので直接適用できない。
2段階の合成最適化のために、近似定常点を求めるリーマンの確率的合成勾配勾配降下 (r-scgd) 法を提案し、予想された二乗リーマン勾配が$\epsilon$, in o(\epsilon^{-2})$ から外関数の確率的勾配神託への呼び出しと、内関数の確率的関数および勾配神託を求める。
さらに,多層ネスト構成構造問題に対するR-SCGDアルゴリズムを,一階確率オラクルに対して$O(\epsilon^{-2})$と同じ複雑さで一般化する。
最後にr-scgd法の性能を強化学習における政策評価問題に対して数値的に評価する。
関連論文リスト
- Gradient-Free Methods for Deterministic and Stochastic Nonsmooth
Nonconvex Optimization [94.19177623349947]
非滑らかな非最適化問題は、機械学習とビジネス製造に現れる。
2つのコア課題は、有限収束を保証する効率的な方法の開発を妨げる。
GFMとSGFMの2相版も提案され, 改良された大規模評価結果が得られた。
論文 参考訳(メタデータ) (2022-09-12T06:53:24Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
滑らかな凸凹凸結合型サドル点問題, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$ を考える。
漸進的勾配指数(AG-EG)降下指数アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2022-06-17T06:10:20Z) - Stochastic Zeroth order Descent with Structured Directions [10.604744518360464]
我々は, 有限差分法であるStructured Zeroth Order Descent (SSZD)を導入・解析し, 集合 $lleq d 方向の勾配を近似し, $d は周囲空間の次元である。
凸凸に対して、すべての$c1/2$に対して$O( (d/l) k-c1/2$)$ 上の関数の収束はほぼ確実に証明する。
論文 参考訳(メタデータ) (2022-06-10T14:00:06Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
勾配ランゲヴィン・ダイナミクスは非エプス最適化問題を解くための最も基本的なアルゴリズムの1つである。
本稿では、このタイプの2つの変種、すなわち、分散還元ランジュバンダイナミクスと再帰勾配ランジュバンダイナミクスを示す。
論文 参考訳(メタデータ) (2022-03-30T11:39:00Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - SGB: Stochastic Gradient Bound Method for Optimizing Partition Functions [15.33098084159285]
本稿では,学習環境における分割関数の最適化の問題に対処する。
本稿では,2次代理を持つ分割関数の上界に依存する有界偏化アルゴリズムの変種を提案する。
論文 参考訳(メタデータ) (2020-11-03T04:42:51Z) - Riemannian Stochastic Proximal Gradient Methods for Nonsmooth
Optimization over the Stiefel Manifold [7.257751371276488]
R-ProxSGDとR-ProxSPBは、近位SGDと近位SpiderBoostの一般化である。
R-ProxSPBアルゴリズムは、オンラインの場合で$O(epsilon-3)$ IFOs、有限サムの場合は$O(n+sqrtnepsilon-3)$ IFOsである。
論文 参考訳(メタデータ) (2020-05-03T23:41:35Z) - Stochastic Zeroth-order Riemannian Derivative Estimation and
Optimization [15.78743548731191]
多様体非線型性の非線型性の難しさを克服するために、ガウス滑らか化関数のオラクル版を提案する。
ニューラルネットワークに対するロボティクスとブラックボックス攻撃に対するブラックボックス剛性制御における,結果によるアルゴリズムの適用性と実世界の応用を実証する。
論文 参考訳(メタデータ) (2020-03-25T06:58:19Z) - Stochastic Recursive Variance Reduction for Efficient Smooth Non-Convex
Compositional Optimization [20.410012564838933]
構成最適化は、強化学習における価値関数の評価やポートフォリオ管理など、多くの重要な機械学習タスクで発生する。
本稿では, 一般的なスムーズな非帰納的設定における一般的な構成最適化について検討する。
論文 参考訳(メタデータ) (2019-12-31T18:59:13Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。