Adiabatic based Algorithm for SAT: a comprehensive algorithmic
description
- URL: http://arxiv.org/abs/2207.09984v2
- Date: Thu, 21 Jul 2022 15:31:50 GMT
- Title: Adiabatic based Algorithm for SAT: a comprehensive algorithmic
description
- Authors: Eric Bourreau, G\'erard Fleury, Philippe Lacomme
- Abstract summary: Quantum approximates take advantage of alternation between a Hamiltonian defining the problem to solve and a mixing Hamiltonian.
The adiabatic theorem initially defined in quantum physic allows to compute a solution for the Schr"odinger equation.
- Score: 2.2688530041645856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper concerns quantum heuristics able to extend the domain of quantum
computing, defining a promising way in the large number of well-known classical
algorithms. Quantum approximate heuristics take advantage of alternation
between a Hamiltonian defining the problem to solve and a mixing Hamiltonian.
The adiabatic theorem initially defined in quantum physic allows to compute a
solution for the Schr\"odinger equation, but the foundation of this methods
requires strong skill in physics and mathematics. Our main objectives in this
paper are at first to provide an algorithm-based presentation (as close as
possible of the classical computer science community in operational research
practice) of the adiabatic optimization and secondly to give a comprehensive
resolution of the well-known SAT problem. This gives opportunities to provide a
concise but explicit analysis of the adiabatic capability to define a new
efficient operational research trend. Our experiments encompass numerical
evaluations on both simulator and on real quantum computer provided by IBM.
Numerical experiments on simulator have been achieved on both Qiskit and MyQLM.
Related papers
- Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Pure Quantum Gradient Descent Algorithm and Full Quantum Variational
Eigensolver [0.7149735232319818]
gradient-based gradient descent algorithm is a widely adopted optimization method.
We propose a novel quantum-based gradient calculation method that requires only a single oracle calculation.
We successfully implemented the quantum gradient descent algorithm and applied it to the Variational Quantum Eigensolver (VQE)
arXiv Detail & Related papers (2023-05-07T05:52:41Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Iterative Qubit Coupled Cluster using only Clifford circuits [36.136619420474766]
An ideal state preparation protocol can be characterized by being easily generated classically.
We propose a method that meets these requirements by introducing a variant of the iterative qubit coupled cluster (iQCC)
We demonstrate the algorithm's correctness in ground-state simulations and extend our study to complex systems like the titanium-based compound Ti(C5H5)(CH3)3 with a (20, 20) active space.
arXiv Detail & Related papers (2022-11-18T20:31:10Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Iterative Quantum Assisted Eigensolver [0.0]
We provide a hybrid quantum-classical algorithm for approximating the ground state of a Hamiltonian.
Our algorithm builds on the powerful Krylov subspace method in a way that is suitable for current quantum computers.
arXiv Detail & Related papers (2020-10-12T12:25:16Z) - Quantum Assisted Eigensolver [0.0]
We propose a hybrid quantum-classical algorithm for approxing the ground state and ground state energy of a Hamiltonian.
The output from the quantum part of the algorithm is utilized as input for the classical computer.
arXiv Detail & Related papers (2020-09-23T08:33:18Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular
Simulations on Quantum Computing Devices [0.0]
We introduce a quantum solver of contracted eigenvalue equations, the quantum analogue of classical methods for the energies.
We demonstrate the algorithm though computations on both a quantum simulator and two IBM quantum processing units.
arXiv Detail & Related papers (2020-04-23T18:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.