論文の概要: Simulating large-size quantum spin chains on cloud-based superconducting
quantum computers
- arxiv url: http://arxiv.org/abs/2207.09994v2
- Date: Fri, 23 Sep 2022 19:08:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-04 07:57:41.931064
- Title: Simulating large-size quantum spin chains on cloud-based superconducting
quantum computers
- Title(参考訳): クラウドベースの超伝導量子コンピュータ上での大規模量子スピンチェーンのシミュレーション
- Authors: Hongye Yu, Yusheng Zhao and Tzu-Chieh Wei
- Abstract要約: 我々は、IBMの超伝導量子コンピュータのいくつかで実行されるクラウドシミュレーションについて報告する。
現実化から抽出した基底状態エネルギーが期待値から小さい誤差に到達していることがわかった。
102量子ビットシステムを用いることで、1回路で最大3186個のCNOTゲートを適用できた。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers have the potential to efficiently simulate large-scale
quantum systems for which classical approaches are bound to fail. Even though
several existing quantum devices now feature total qubit numbers of more than
one hundred, their applicability remains plagued by the presence of noise and
errors. Thus, the degree to which large quantum systems can successfully be
simulated on these devices remains unclear. Here, we report on cloud
simulations performed on several of IBM's superconducting quantum computers to
simulate ground states of spin chains having a wide range of system sizes up to
one hundred and two qubits. We find that the ground-state energies extracted
from realizations across different quantum computers and system sizes reach the
expected values to within errors that are small (i.e. on the percent level),
including the inference of the energy density in the thermodynamic limit from
these values. We achieve this accuracy through a combination of
physics-motivated variational Ansatzes, and efficient, scalable
energy-measurement and error-mitigation protocols, including the use of a
reference state in the zero-noise extrapolation. By using a 102-qubit system,
we have been able to successfully apply up to 3186 CNOT gates in a single
circuit when performing gate-error mitigation. Our accurate, error-mitigated
results for random parameters in the Ansatz states suggest that a standalone
hybrid quantum-classical variational approach for large-scale XXZ models is
feasible.
- Abstract(参考訳): 量子コンピュータは、古典的アプローチが失敗する大規模量子システムを効率的にシミュレートすることができる。
現在、いくつかの既存の量子デバイスには総量子ビット数が100以上あるが、その適用性はノイズやエラーに悩まされている。
したがって、これらのデバイスで大きな量子系がうまくシミュレートできる程度は不明確である。
本稿では,ibmの超伝導量子コンピュータ数台において,100量子ビットから2量子ビットまでの広い範囲のスピンチェーンの基底状態のシミュレーションを行うクラウドシミュレーションについて報告する。
異なる量子コンピュータおよびシステムサイズにわたる実現から抽出された基底状態エネルギーは、これらの値から熱力学的限界におけるエネルギー密度の推定を含む、小さな誤差(すなわちパーセントレベル)の範囲内で期待値に達することが判明した。
この精度は,ゼロノイズ外挿法における参照状態の使用を含む,物理学的動機付き変分アンサテイズと,効率的でスケーラブルなエネルギー測定および誤り軽減プロトコルを組み合わせることで達成する。
102量子ビットシステムを用いることで,ゲートエラー軽減を行う場合,最大3186個のCNOTゲートを単一回路に適用することができた。
アンザッツ状態のランダムなパラメータに対する正確な誤差緩和結果は、大規模XXZモデルに対するスタンドアロンの量子古典的変分法が実現可能であることを示唆している。
関連論文リスト
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
不等式はボゾン量子モードの最も一般的な線形混合の出力の最小条件フォン・ノイマンエントロピーを決定する。
ボソニック量子系は、量子状態における電磁放射の数学的モデルを構成する。
論文 参考訳(メタデータ) (2024-10-18T13:59:50Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
平衡伝播(Equilibrium propagation、EP)は、平衡に緩和する古典的なエネルギーモデルに導入され応用された手順である。
ここでは、EPとOnsagerの相互性を直接接続し、これを利用してEPの量子バージョンを導出する。
これは任意の量子系の可観測物の期待値に依存する損失関数の最適化に使うことができる。
論文 参考訳(メタデータ) (2024-06-10T17:22:09Z) - Quantum quench dynamics as a shortcut to adiabaticity [31.114245664719455]
本研究では,クエンチステップを組み込んだ量子アルゴリズムを,変分するアディバティック・タイムスケールに対する対策として開発・テストする。
実験の結果,本手法は断熱アルゴリズムよりも有意に優れていることがわかった。
論文 参考訳(メタデータ) (2024-05-31T17:07:43Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
ジャジンスキー等式から動機付けられたアルゴリズムを用いて, 有限温度可観測体がどのように得られるかを示す。
長範囲の逆場イジングモデルにおける有限温度相転移は、捕捉されたイオン量子シミュレータで特徴づけられることを示す。
論文 参考訳(メタデータ) (2022-06-03T18:00:02Z) - Schr\"odinger-Heisenberg Variational Quantum Algorithms [1.9887498823918806]
最近のブレークスルーにより、数十から数百キュービットの中間スケールの量子コンピューティングが可能になった。
古典的コンピュータを超えるために必要な極めて高い精度は、回路深度に重大な需要をもたらす。
本稿では,この問題を解決するために,シュリンガー・ハイゼンベルク変分量子アルゴリズムのパラダイムを提案する。
論文 参考訳(メタデータ) (2021-12-15T04:53:01Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
与えられたハミルトニアンの基底状態と低い励起を見つけることは、物理学の多くの分野において最も重要な問題の一つである。
Noisy Intermediate-Scale Quantum (NISQ) デバイス上の量子コンピューティングは、そのような計算を効率的に実行する可能性を提供する。
現在の量子デバイスは、今でも固有の量子ノイズに悩まされている。
論文 参考訳(メタデータ) (2021-11-30T16:08:01Z) - Convergence of reconstructed density matrix to a pure state using
maximal entropy approach [4.084744267747294]
量子系の密度行列を任意の量子ビットに対して純粋な状態に完全に再構成するためのQSTの代替手法を提案する。
我々のゴールは、実際の量子コンピュータにおける量子エラー軽減の分野に応用できる純粋状態の量子システムの実用的な推論を提供することである。
論文 参考訳(メタデータ) (2021-07-02T16:58:26Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Googleの最近の量子超越性実験は、量子コンピューティングがランダムな回路サンプリングという計算タスクを実行する遷移点を示している。
観測された量子ランタイムの利点の制約を、より多くの量子ビットとゲートで検討する。
論文 参考訳(メタデータ) (2020-05-05T20:11:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。