論文の概要: DDPG based on multi-scale strokes for financial time series trading
strategy
- arxiv url: http://arxiv.org/abs/2207.10071v1
- Date: Sun, 5 Jun 2022 13:10:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-10 12:20:10.726755
- Title: DDPG based on multi-scale strokes for financial time series trading
strategy
- Title(参考訳): 金融時系列取引戦略のためのマルチスケールストロークに基づくDDPG
- Authors: Jun-Cheng Chen, Cong-Xiao Chen, Li-Juan Duan, Zhi Cai
- Abstract要約: 単一スケール時系列のノイズ特性,非定常性,非線形性などにより,正確な特徴を抽出することは困難である。
我々は,マルチスケールストローク・ディープ決定論的政策勾配強化学習モデルのアプローチを提唱した。
我々のアプローチは中国のCSI 300,SSEコンポジットで最高のパフォーマンスを獲得し、アメリカのDow Jones,S&P 500で傑出した結果を得る。
- 参考スコア(独自算出の注目度): 21.51375660624866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of artificial intelligence,more and more financial
practitioners apply deep reinforcement learning to financial trading
strategies.However,It is difficult to extract accurate features due to the
characteristics of considerable noise,highly non-stationary,and non-linearity
of single-scale time series,which makes it hard to obtain high returns.In this
paper,we extract a multi-scale feature matrix on multiple time scales of
financial time series,according to the classic financial theory-Chan Theory,and
put forward to an approach of multi-scale stroke deep deterministic policy
gradient reinforcement learning model(MSSDDPG)to search for the optimal trading
strategy.We carried out experiments on the datasets of the Dow Jones,S&P 500 of
U.S. stocks, and China's CSI 300,SSE Composite,evaluate the performance of our
approach compared with turtle trading strategy, Deep
Q-learning(DQN)reinforcement learning strategy,and deep deterministic policy
gradient (DDPG) reinforcement learning strategy.The result shows that our
approach gets the best performance in China CSI 300,SSE Composite,and get an
outstanding result in Dow Jones,S&P 500 of U.S.
- Abstract(参考訳): With the development of artificial intelligence,more and more financial practitioners apply deep reinforcement learning to financial trading strategies.However,It is difficult to extract accurate features due to the characteristics of considerable noise,highly non-stationary,and non-linearity of single-scale time series,which makes it hard to obtain high returns.In this paper,we extract a multi-scale feature matrix on multiple time scales of financial time series,according to the classic financial theory-Chan Theory,and put forward to an approach of multi-scale stroke deep deterministic policy gradient reinforcement learning model(MSSDDPG)to search for the optimal trading strategy.We carried out experiments on the datasets of the Dow Jones,S&P 500 of U.S. stocks, and China's CSI 300,SSE Composite,evaluate the performance of our approach compared with turtle trading strategy, Deep Q-learning(DQN)reinforcement learning strategy,and deep deterministic policy gradient (DDPG) reinforcement learning strategy.The result shows that our approach gets the best performance in China CSI 300,SSE Composite,and get an outstanding result in Dow Jones,S&P 500 of U.S.
関連論文リスト
- Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
本稿では,動的な金融市場における非マルコフ的最適実行戦略の学習に挑戦する。
我々は,Deep Deterministic Policy Gradient(DDPG)に基づく新しいアクター批判アルゴリズムを提案する。
提案アルゴリズムは最適実行戦略の近似に成功していることを示す。
論文 参考訳(メタデータ) (2024-10-17T12:38:08Z) - Hedge Fund Portfolio Construction Using PolyModel Theory and iTransformer [1.4061979259370274]
ヘッジファンドポートフォリオ構築のためのPolyModel理論を実装した。
我々は,長期アルファ,長期比,SVaRなどの定量的尺度を作成する。
また、最新のディープラーニング技術(iTransformer)を使って、上昇傾向を捉えています。
論文 参考訳(メタデータ) (2024-08-06T17:55:58Z) - A quantitative fusion strategy of stock picking and timing based on
Particle Swarm Optimized-Back Propagation Neural Network and Multivariate
Gaussian-Hidden Markov Model [0.0]
本研究は,ストックタイミングとピック戦略を組み合わせた定量的核融合モデルを提案する。
我々はMGHMMが訓練した株と株式市場の状態に基づいて、予測と取引を行う。
本論文で提示する株式の選定とタイミングを取り入れた融合戦略は、金融分析の革新的な技術である。
論文 参考訳(メタデータ) (2023-12-10T04:33:59Z) - From Bandits Model to Deep Deterministic Policy Gradient, Reinforcement
Learning with Contextual Information [4.42532447134568]
本研究では,文脈情報による問題を克服するために2つの手法を用いる。
量的市場における戦略的トレーディングを検討するため、我々はCPPI(Constant proportion portfolio Insurance)と呼ばれる初期の金融トレーディング戦略をDDPG(Deep Deterministic Policy gradient)に統合した。
実験の結果,両手法が強化学習の進行を加速し,最適解が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-01T11:25:20Z) - Optimizing Trading Strategies in Quantitative Markets using Multi-Agent
Reinforcement Learning [11.556829339947031]
本稿では、固定比率ポートフォリオ保険(CPPI)と時間不変ポートフォリオ保護(TIPP)の2つの確立された金融取引戦略の統合について検討する。
本稿では,量的市場における戦略的取引の探索に適した2つの新しいマルチエージェントRL(MARL)手法,CPPI-MADDPGとTIPP-MADDPGを紹介する。
実験の結果,CPPI-MADDPGとTIPP-MADDPGの戦略は従来よりも一貫して優れていた。
論文 参考訳(メタデータ) (2023-03-15T11:47:57Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Deep Stock Trading: A Hierarchical Reinforcement Learning Framework for
Portfolio Optimization and Order Execution [26.698261314897195]
ポートフォリオマネジメントのための階層型株取引システム(HRPM)を提案する。
我々は、取引プロセスを取引実行よりもポートフォリオ管理の階層に分解し、対応する政策を訓練する。
HRPMは多くの最先端アプローチに対して大幅な改善を実現している。
論文 参考訳(メタデータ) (2020-12-23T12:09:26Z) - Evaluating data augmentation for financial time series classification [85.38479579398525]
2つの最先端ディープラーニングモデルを用いて,ストックデータセットに適用したいくつかの拡張手法を評価する。
比較的小さなデータセット拡張手法では、リスク調整された戻り値のパフォーマンスが最大400%向上する。
より大きなストックデータセット拡張メソッドでは、最大40%の改善が達成される。
論文 参考訳(メタデータ) (2020-10-28T17:53:57Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
我々は、株式市場の日々の価格を予測するためのグローバルなハイブリッドディープラーニングフレームワークを開発することを提案した。
表現学習によって、私たちはStock2Vecという埋め込みを導きました。
我々のハイブリッドフレームワークは、両方の利点を統合し、いくつかの人気のあるベンチマークモデルよりも、株価予測タスクにおいてより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-29T22:54:30Z) - Momentum-Based Policy Gradient Methods [133.53164856723782]
モデルフリー強化学習のための効率的なモーメントに基づくポリシー勾配手法のクラスを提案する。
特に,IS-MBPG法の適応的でないバージョンを提示するが,これは大きなバッチを伴わずに$O(epsilon-3)$と最もよく知られたサンプルの複雑さに達する。
論文 参考訳(メタデータ) (2020-07-13T20:44:15Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。