論文の概要: Wide & Deep Learning for Judging Student Performance in Online
One-on-one Math Classes
- arxiv url: http://arxiv.org/abs/2207.10645v1
- Date: Wed, 13 Jul 2022 01:38:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-24 11:40:25.718377
- Title: Wide & Deep Learning for Judging Student Performance in Online
One-on-one Math Classes
- Title(参考訳): オンライン1対1の数学授業における学生のパフォーマンス評価のための広範・深層学習
- Authors: Jiahao Chen, Zitao Liu, Weiqi Luo
- Abstract要約: 雑音の多い教室の会話データから詳細な予測表現を学習するためのフレームワークを構築した。
本研究では,実例質問の熟達度を推定する作業について実験を行った。
- 参考スコア(独自算出の注目度): 27.07952179997629
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the opportunities of automating the judgment
process in online one-on-one math classes. We build a Wide & Deep framework to
learn fine-grained predictive representations from a limited amount of noisy
classroom conversation data that perform better student judgments. We conducted
experiments on the task of predicting students' levels of mastery of example
questions and the results demonstrate the superiority and availability of our
model in terms of various evaluation metrics.
- Abstract(参考訳): 本稿では,オンライン一対一数学授業における判断プロセスの自動化の機会について検討する。
我々は,学生の判断に優れたノイズの多い教室会話データから,きめ細かな予測表現を学習するための広範かつ深いフレームワークを構築した。
本研究は,サンプル質問の熟達度を推定する作業について実験を行い,様々な評価指標を用いて,モデルの優位性と有効性を示した。
関連論文リスト
- A Predictive Model for Student Performance in Classrooms Using Student
Interactions With an eTextbook [0.0]
本稿では,学生がインタラクティブなオンラインeTextbookとどのように相互作用するかの分析に基づいて,学生のパフォーマンスを予測する新しいモデルを提案する。
提案モデルを構築するために,データ構造とアルゴリズムのコースから得られたデータに基づいて,最も一般的な分類アルゴリズムと回帰アルゴリズムを評価した。
論文 参考訳(メタデータ) (2022-02-16T11:59:53Z) - Self-training with Few-shot Rationalization: Teacher Explanations Aid
Student in Few-shot NLU [88.8401599172922]
タスク固有のラベルと合理的性に制限された自己学習言語モデルに基づくフレームワークを開発する。
ニューラルネットワークの性能は,その合理的な予測を意識することで,大幅に向上できることを示す。
論文 参考訳(メタデータ) (2021-09-17T00:36:46Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z) - Multi-Task Learning based Online Dialogic Instruction Detection with
Pre-trained Language Models [34.66425105076059]
コントラッシブ・ロスによりカテゴリ間のマージンを大きくすることで、異なるクラスのインスタンスを識別する能力を向上するマルチタスク・パラダイムを提案する。
実世界のオンライン教育データセットを用いた実験により,本手法が代表的ベースラインよりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2021-07-15T04:57:57Z) - Curriculum Learning: A Survey [65.31516318260759]
カリキュラム学習戦略は、機械学習のあらゆる分野で成功している。
我々は,様々な分類基準を考慮して,カリキュラム学習アプローチの分類を手作業で構築する。
集約型クラスタリングアルゴリズムを用いて,カリキュラム学習手法の階層木を構築する。
論文 参考訳(メタデータ) (2021-01-25T20:08:32Z) - Online Active Model Selection for Pre-trained Classifiers [72.84853880948894]
我々は,任意のラウンドにおいて高い確率で最良のモデルをラベル付けし,出力する情報的サンプルを積極的に選択するオンライン選択的サンプリング手法を設計する。
我々のアルゴリズムは、敵とストリームの両方のオンライン予測タスクに利用できる。
論文 参考訳(メタデータ) (2020-10-19T19:53:15Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
本稿では,対話型オンライン質問プールにおいて,より優れた生徒のパフォーマンス予測を実現するために,グラフニューラルネットワーク(GNN)を用いた新しいアプローチを提案する。
具体的には,学生のインタラクションを用いた学生と質問の関係をモデル化し,学生のインタラクション・クエストネットワークを構築する。
1631の質問に対して4000人以上の学生の問題解決過程において生成した104,113個のマウス軌跡からなる実世界のデータセットに対するアプローチの有効性を評価した。
論文 参考訳(メタデータ) (2020-08-04T14:55:32Z) - Data-driven modelling and characterisation of task completion sequences
in online courses [0.0]
本稿では,オンライン授業におけるタスク完了の時間的シーケンスのデータ駆動分析の利用方法を示す。
コース設計における課題のタイプ間における臨界点と相違点を同定する。
対話的タスクや議論投稿などの非ロボット学習タスクは、より高いパフォーマンスと相関していることがわかった。
論文 参考訳(メタデータ) (2020-07-14T12:39:03Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
教師の音声記録から質問を自動的に検出するエンドツーエンドのニューラルネットワークフレームワークを構築している。
マルチタスク学習手法を取り入れることで,質問の種類によって意味的関係の理解を深めることが可能となる。
論文 参考訳(メタデータ) (2020-05-16T02:17:04Z) - Educational Question Mining At Scale: Prediction, Analysis and
Personalization [35.42197158180065]
大規模に教育的な問題から洞察を抽出する枠組みを提案する。
我々は最先端のベイズ深層学習法、特に部分変分オートエンコーダ(p-VAE)を利用する。
提案したフレームワークを,数万の質問と数千万の回答をオンライン教育プラットフォームから収集した実世界のデータセットに適用する。
論文 参考訳(メタデータ) (2020-03-12T19:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。