Many-body quantum sign structures as non-glassy Ising models
- URL: http://arxiv.org/abs/2207.10675v2
- Date: Mon, 2 Oct 2023 09:37:23 GMT
- Title: Many-body quantum sign structures as non-glassy Ising models
- Authors: Tom Westerhout, Mikhail I. Katsnelson, Andrey A. Bagrov
- Abstract summary: We study real-valued signful ground-state wave functions of frustrated quantum spin systems.
We show that the signs can be easily bootstrapped from the amplitudes.
We reconstruct the signs of the ground states of several frustrated quantum models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The non-trivial phase structure of the eigenstates of many-body quantum
systems severely limits the applicability of quantum Monte Carlo, variational,
and machine learning methods. Here, we study real-valued signful ground-state
wave functions of frustrated quantum spin systems and, assuming that the tasks
of finding wave function amplitudes and signs can be separated, show that the
signs can be easily bootstrapped from the amplitudes. We map the problem of
finding the sign structure to an auxiliary classical Ising model defined on a
subset of the Hilbert space basis. We show that the Ising model does not
exhibit significant frustrations even for highly frustrated parental quantum
systems, and is solvable with a fully deterministic $O(K\log K)$-time
combinatorial algorithm (where $K$ is the Ising model size). Given the ground
state amplitudes, we reconstruct the signs of the ground states of several
frustrated quantum models, thereby revealing the hidden simplicity of many-body
sign structures.
Related papers
- Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.
We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.
We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Hidden tensor structures [0.0]
A single quantum mechanical system is automatically equipped with infinitely many hidden tensor-like structures.
These hidden structures are at the roots of some well known theoretical constructions.
The discussed structures explain why it is possible to emulate a quantum computer by classical analog circuit devices.
arXiv Detail & Related papers (2023-08-08T12:08:15Z) - Transition to chaos in extended systems and their quantum impurity
models [0.0]
Chaos sets a fundamental limit to quantum-information processing schemes.
We study the onset of chaos in spatially extended quantum many-body systems that are relevant to quantum optical devices.
arXiv Detail & Related papers (2022-05-02T18:01:09Z) - Quantum Sampling Algorithms, Phase Transitions, and Computational
Complexity [0.0]
Drawing independent samples from a probability distribution is an important computational problem with applications in Monte Carlo algorithms, machine learning, and statistical physics.
The problem can in principle be solved on a quantum computer by preparing a quantum state that encodes the entire probability distribution followed by a projective measurement.
We investigate the complexity of adiabatically preparing such quantum states for the Gibbs distributions of various models including the Ising chain, hard-sphere models on different graphs, and a model encoding the unstructured search problem.
arXiv Detail & Related papers (2021-09-07T11:43:45Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Detecting many-body Bell non-locality by solving Ising models [0.0]
We show that an arbitrary set of quantum data is compatible with a local theory, if not, it delivers a many-body Bell inequality violated by the quantum data.
We use our approach to unveil new many-body Bell inequalities, violated by suitable measurements on paradigmatic quantum states.
arXiv Detail & Related papers (2020-04-16T17:40:04Z) - Sample-efficient learning of quantum many-body systems [17.396274240172122]
We study the problem of learning the Hamiltonian of a quantum many-body system given samples from its Gibbs state.
We give the first sample-efficient algorithm for the quantum Hamiltonian learning problem.
arXiv Detail & Related papers (2020-04-15T18:01:59Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.