Hidden tensor structures
- URL: http://arxiv.org/abs/2308.04202v4
- Date: Tue, 30 Jan 2024 22:20:54 GMT
- Title: Hidden tensor structures
- Authors: Marek Czachor
- Abstract summary: A single quantum mechanical system is automatically equipped with infinitely many hidden tensor-like structures.
These hidden structures are at the roots of some well known theoretical constructions.
The discussed structures explain why it is possible to emulate a quantum computer by classical analog circuit devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Any single system whose space of states is given by a separable Hilbert space
is automatically equipped with infinitely many hidden tensor-like structures.
This includes all quantum mechanical systems as well as classical field
theories and classical signal analysis. Accordingly, systems as simple as a
single one-dimensional harmonic oscillator, an infinite potential well, or a
classical finite-amplitude signal of finite duration, can be decomposed into an
arbitrary number of subsystems. The resulting structure is rich enough to
enable quantum computation, violation of Bell's inequalities, and formulation
of universal quantum gates. Less standard quantum applications involve a
distinction between position and hidden position. The hidden position can be
accompanied by a hidden spin, even if the particle is spinless. Hidden degrees
of freedom are in many respects analogous to modular variables. Moreover, it is
shown that these hidden structures are at the roots of some well known
theoretical constructions, such as the Brandt-Greenberg multi-boson
representation of creation-annihilation operators, intensively investigated in
the context of higher-order or fractional-order squeezing. In the context of
classical signal analysis, the discussed structures explain why it is possible
to emulate a quantum computer by classical analog circuit devices.
Related papers
- Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.
We show that no such simulation exists, thereby certifying quantum coherence.
Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Heading towards an Algebraic Heisenberg Cut [0.0]
We show that early signs of macroscopic behaviour appear before infinity.
This lays the grounds for justifying the inclusion in quantum physics of the ITP formalism.
arXiv Detail & Related papers (2024-12-21T10:39:40Z) - Quantum information with quantum-like bits [0.0]
We show how arbitrary gates can be implemented by manipulating many-body correlations.
This suggests the possibility of quantum-like information processing on a special class of many-body classical systems.
arXiv Detail & Related papers (2024-08-12T20:40:54Z) - The Hidden Ontological Variable in Quantum Harmonic Oscillators [0.0]
The standard quantum mechanical harmonic oscillator has an exact, dual relationship with a completely classical system.
One finds that, where the classical system always obeys the rule "probability in = probability out", the same probabilities are quantum probabilities in the quantum system.
arXiv Detail & Related papers (2024-07-25T16:05:18Z) - Quantum-classical correspondence in quantum channels [0.0]
Quantum channels describe subsystem or open system evolution.
Four classical Koopman channels are identified that are analogs of the 4 possible quantum channels in a bipartite setting.
arXiv Detail & Related papers (2024-07-19T06:53:45Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Overlapping qubits from non-isometric maps and de Sitter tensor networks [41.94295877935867]
We show that processes in local effective theories can be spoofed with a quantum system with fewer degrees of freedom.
We highlight how approximate overlapping qubits are conceptually connected to Hilbert space dimension verification, degree-of-freedom counting in black holes and holography.
arXiv Detail & Related papers (2023-04-05T18:08:30Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Quantum-Classical Hybrid Systems and their Quasifree Transformations [0.0]
We study continuous variable systems in which quantum and classical degrees of freedom are combined and treated on the same footing.
This allows a unified treatment of a large variety of quantum operations involving measurements or dependence on classical parameters.
arXiv Detail & Related papers (2022-08-09T19:51:10Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.