論文の概要: Decentralized digital twins of complex dynamical systems
- arxiv url: http://arxiv.org/abs/2207.12245v1
- Date: Thu, 7 Jul 2022 19:44:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-31 14:49:46.189047
- Title: Decentralized digital twins of complex dynamical systems
- Title(参考訳): 複素力学系の分散ディジタル双生児
- Authors: Omer San, Suraj Pawar, Adil Rasheed
- Abstract要約: 動的システムのための分散双対(DDT)フレームワークを提案する。
計算科学・工学応用におけるDDTパラダイムの展望について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a decentralized digital twin (DDT) framework for
dynamical systems and discuss the prospects of the DDT modeling paradigm in
computational science and engineering applications. The DDT approach is built
on a federated learning concept, a branch of machine learning that encourages
knowledge sharing without sharing the actual data. This approach enables
clients to collaboratively learn an aggregated model while keeping all the
training data on each client. We demonstrate the feasibility of the DDT
framework with various dynamical systems, which are often considered prototypes
for modeling complex transport phenomena in spatiotemporally extended systems.
Our results indicate that federated machine learning might be a key enabler for
designing highly accurate decentralized digital twins in complex nonlinear
spatiotemporal systems.
- Abstract(参考訳): 本稿では、動的システムのための分散デジタルツイン(DDT)フレームワークを導入し、計算科学および工学応用におけるDDTモデリングパラダイムの展望について論じる。
ddtのアプローチは、実際のデータを共有せずに知識共有を促進する機械学習の分野である、連合学習の概念に基づいている。
このアプローチにより、クライアントは、各クライアントにすべてのトレーニングデータを保持しながら、協調して集約モデルを学ぶことができる。
時空間拡張システムにおける複雑な輸送現象をモデル化するためのプロトタイプとして,様々な力学系を用いたDDTフレームワークの実現可能性を示す。
以上の結果から,複雑な非線形時空間システムにおいて,高精度な分散ディジタルツインを設計する上で,連合機械学習が鍵となる可能性が示唆された。
関連論文リスト
- Learning Paradigms and Modelling Methodologies for Digital Twins in Process Industry [1.1060425537315088]
デジタルツイン(Digital Twins、DT)は、センサーデータと高度なデータベースまたは物理ベースのモデル、あるいはその組み合わせを組み合わせた物理製造システムの仮想レプリカで、プロセス監視、予測制御、意思決定支援など、さまざまな産業関連タスクに対処する。
DTのバックボーン、すなわち、これらのモデルをサポートする具体的なモデリング方法論とアーキテクチャフレームワークは、複雑で多様性があり、急速に進化し、最新の最先端の手法と競争の激しい市場のトップに留まる傾向を徹底的に理解する必要がある。
論文 参考訳(メタデータ) (2024-07-02T14:05:10Z) - Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Constructing and Evaluating Digital Twins: An Intelligent Framework for DT Development [11.40908718824589]
デジタルツインズ(DT)の開発は、制御されたデジタル空間における複雑なシステムをシミュレートし最適化するための変革的な進歩を表している。
本稿では,アルゴリズム性能試験におけるDTの精度と有用性を高めるために,DTの構築と評価のためのインテリジェントなフレームワークを提案する。
本稿では,Deep Learning-based policy gradient techniqueを統合してDTパラメータを動的に調整し,物理システムのデジタル複製における高い忠実性を確保する手法を提案する。
論文 参考訳(メタデータ) (2024-06-19T01:45:18Z) - From Digital Twins to Digital Twin Prototypes: Concepts, Formalization,
and Applications [55.57032418885258]
デジタル双対とは何かという合意的な定義は存在しない。
我々のデジタルツインプロトタイプ(DTP)アプローチは、組み込みソフトウェアシステムの開発と自動テストにおいて、エンジニアを支援します。
論文 参考訳(メタデータ) (2024-01-15T22:13:48Z) - Digital Twin Framework for Optimal and Autonomous Decision-Making in
Cyber-Physical Systems: Enhancing Reliability and Adaptability in the Oil and
Gas Industry [0.0]
本研究は,石油・ガス産業におけるガスリフトプロセスに適用可能な,最適かつ自律的な意思決定のためのディジタルツインフレームワークを提案する。
このフレームワークは、ベイジアン推論、モンテカルロシミュレーション、トランスファーラーニング、オンライン学習、そしてDTに認知を与える新しい戦略を組み合わせたものである。
論文 参考訳(メタデータ) (2023-11-21T18:02:52Z) - Prospects of federated machine learning in fluid dynamics [0.0]
近年、機械学習は、データサイエンスの急速な発展により、流体コミュニティにルネッサンスを与えている。
本稿では,集約された共有予測モデルとの協調学習を可能にする,フェデレートされた機械学習手法を提案する。
本研究では、時間場再構築のための深層学習サロゲートモデルの構築をめざして、このような分散学習アプローチの実現可能性と展望を実証する。
論文 参考訳(メタデータ) (2022-08-15T06:15:04Z) - Automatic digital twin data model generation of building energy systems
from piping and instrumentation diagrams [58.720142291102135]
建物からP&IDのシンボルや接続を自動で認識する手法を提案する。
シンボル認識,線認識,およびデータセットへの接続の導出にアルゴリズムを適用する。
このアプローチは、制御生成、(分散)モデル予測制御、障害検出といった、さらなるプロセスで使用することができる。
論文 参考訳(メタデータ) (2021-08-31T15:09:39Z) - Multi-Robot Deep Reinforcement Learning for Mobile Navigation [82.62621210336881]
階層的統合モデル(HInt)を用いた深層強化学習アルゴリズムを提案する。
トレーニング時には、HIntは別々の知覚モデルとダイナミクスモデルを学び、テスト時には、HIntは2つのモデルを階層的な方法で統合し、統合モデルとアクションを計画する。
我々のモバイルナビゲーション実験は、HIntが従来の階層的ポリシーや単一ソースアプローチよりも優れていることを示している。
論文 参考訳(メタデータ) (2021-06-24T19:07:40Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Machine learning based digital twin for dynamical systems with multiple
time-scales [0.0]
デジタルツイン技術は、インフラ、航空宇宙、自動車といった様々な産業分野で広く応用される可能性がある。
ここでは、2つの異なる運用時間スケールで進化する線形単一自由度構造力学系のためのデジタルツインフレームワークに焦点を当てる。
論文 参考訳(メタデータ) (2020-05-12T15:33:25Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。