論文の概要: Learning Paradigms and Modelling Methodologies for Digital Twins in Process Industry
- arxiv url: http://arxiv.org/abs/2407.02275v1
- Date: Tue, 2 Jul 2024 14:05:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 15:15:58.771963
- Title: Learning Paradigms and Modelling Methodologies for Digital Twins in Process Industry
- Title(参考訳): プロセス産業におけるデジタル双生児のパラダイム学習とモデリング手法
- Authors: Michael Mayr, Georgios C. Chasparis, Josef Küng,
- Abstract要約: デジタルツイン(Digital Twins、DT)は、センサーデータと高度なデータベースまたは物理ベースのモデル、あるいはその組み合わせを組み合わせた物理製造システムの仮想レプリカで、プロセス監視、予測制御、意思決定支援など、さまざまな産業関連タスクに対処する。
DTのバックボーン、すなわち、これらのモデルをサポートする具体的なモデリング方法論とアーキテクチャフレームワークは、複雑で多様性があり、急速に進化し、最新の最先端の手法と競争の激しい市場のトップに留まる傾向を徹底的に理解する必要がある。
- 参考スコア(独自算出の注目度): 1.1060425537315088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Central to the digital transformation of the process industry are Digital Twins (DTs), virtual replicas of physical manufacturing systems that combine sensor data with sophisticated data-based or physics-based models, or a combination thereof, to tackle a variety of industrial-relevant tasks like process monitoring, predictive control or decision support. The backbone of a DT, i.e. the concrete modelling methodologies and architectural frameworks supporting these models, are complex, diverse and evolve fast, necessitating a thorough understanding of the latest state-of-the-art methods and trends to stay on top of a highly competitive market. From a research perspective, despite the high research interest in reviewing various aspects of DTs, structured literature reports specifically focusing on unravelling the utilized learning paradigms (e.g. self-supervised learning) for DT-creation in the process industry are a novel contribution in this field. This study aims to address these gaps by (1) systematically analyzing the modelling methodologies (e.g. Convolutional Neural Network, Encoder-Decoder, Hidden Markov Model) and paradigms (e.g. data-driven, physics-based, hybrid) used for DT-creation; (2) assessing the utilized learning strategies (e.g. supervised, unsupervised, self-supervised); (3) analyzing the type of modelling task (e.g. regression, classification, clustering); and (4) identifying the challenges and research gaps, as well as, discuss potential resolutions provided.
- Abstract(参考訳): プロセス産業のデジタルトランスフォーメーションの中心は、Digital Twins(DT)、センサーデータと高度なデータベースまたは物理ベースのモデルを組み合わせた物理製造システムの仮想レプリカ、あるいはその組み合わせで、プロセス監視、予測制御、意思決定支援など、さまざまな産業関連タスクに取り組む。
DTのバックボーン、すなわち、これらのモデルをサポートする具体的なモデリング方法論とアーキテクチャフレームワークは、複雑で多様性があり、急速に進化し、最新の最先端の手法と競争の激しい市場のトップに留まる傾向を徹底的に理解する必要がある。
研究の観点からは、DTの様々な側面をレビューすることへの高い研究関心にもかかわらず、プロセス産業におけるDT作成のための活用学習パラダイム(例えば自己教師型学習)の非活性化に焦点を当てた構造化文学レポートは、この分野における新たな貢献である。
本研究の目的は,(1)モデル作成手法(例えば畳み込みニューラルネットワーク,エンコーダデコーダ,隠れマルコフモデル)とパラダイム(例えばデータ駆動型,物理ベース,ハイブリッド)を体系的に分析すること,(2)活用学習戦略(例えば教師なし,教師なし,自己監督型)を評価すること,(3)モデル作成タスクの種類(例えば回帰,分類,クラスタリング)を分析すること,(4)課題と研究ギャップを識別すること,に加えて,提案された解決可能性についても検討することである。
関連論文リスト
- A Survey of Model Architectures in Information Retrieval [64.75808744228067]
機能抽出のためのバックボーンモデルと、関連性推定のためのエンドツーエンドシステムアーキテクチャの2つの重要な側面に焦点を当てる。
従来の用語ベースの手法から現代のニューラルアプローチまで,特にトランスフォーマーベースのモデルとそれに続く大規模言語モデル(LLM)の影響が注目されている。
我々は、パフォーマンスとスケーラビリティのアーキテクチャ最適化、マルチモーダル、マルチランガルデータの処理、従来の検索パラダイムを超えた新しいアプリケーションドメインへの適応など、新たな課題と今後の方向性について議論することで結論付けた。
論文 参考訳(メタデータ) (2025-02-20T18:42:58Z) - Transforming Engineering Education Using Generative AI and Digital Twin Technologies [0.632032341649772]
本研究では,産業用デジタルツイン(DT)の教育への応用について検討する。
これは、認知領域におけるブルームの分類の異なる段階をDTモデルがどうサポートできるかに焦点を当てている。
論文 参考訳(メタデータ) (2024-11-02T07:16:47Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
モデルマージは、機械学習コミュニティにおける効率的なエンパワーメント技術である。
これらの手法の体系的かつ徹底的なレビューに関する文献には大きなギャップがある。
論文 参考訳(メタデータ) (2024-08-14T16:58:48Z) - Vision Foundation Models in Remote Sensing: A Survey [6.036426846159163]
ファンデーションモデルは、前例のない精度と効率で幅広いタスクを実行することができる大規模で事前訓練されたAIモデルである。
本調査は, 遠隔センシングにおける基礎モデルの開発と応用を継続するために, 進展のパノラマと将来性のある経路を提供することによって, 研究者や実践者の資源として機能することを目的としている。
論文 参考訳(メタデータ) (2024-08-06T22:39:34Z) - iNNspector: Visual, Interactive Deep Model Debugging [8.997568393450768]
本研究では,ディープラーニング実験のデータ空間を構造化する概念的枠組みを提案する。
我々のフレームワークは設計の次元を捉え、このデータを探索可能かつ抽出可能にするためのメカニズムを提案する。
我々は、ディープラーニング実験の追跡を可能にし、データのインタラクティブな可視化を提供するiNNspectorシステムを提案する。
論文 参考訳(メタデータ) (2024-07-25T12:48:41Z) - Current Trends in Digital Twin Development, Maintenance, and Operation: An Interview Study [0.2871849986181679]
デジタルツイン(DT)は、しばしば物理的実体と対応する仮想実体(VE)のペアリングとして定義される。
デジタル双生児の生活段階と密接に関連している産学専門職19名を対象に半構造化面接を行った。
論文 参考訳(メタデータ) (2023-06-16T12:19:28Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
本研究では,自然言語処理とコンピュータビジョンの分野における9つのタスクの集合であるベンチマークを作成する。
外部知識を制約としてモデル化し、各タスクの制約のソースを特定し、これらの制約を使用するさまざまなモデルを実装します。
論文 参考訳(メタデータ) (2023-02-16T16:45:36Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Structured learning of rigid-body dynamics: A survey and unified view
from a robotics perspective [5.597839822252915]
剛体力学とデータ駆動モデリング技術を組み合わせた回帰モデルについて検討した。
我々は、ニューラルネットワークやガウス過程などのデータ駆動回帰モデルと分析モデル先行モデルの組み合わせに関する統一的な見解を提供する。
論文 参考訳(メタデータ) (2020-12-11T11:26:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。