Efficient protocol for solving combinatorial graph problems on
neutral-atom quantum processors
- URL: http://arxiv.org/abs/2207.13030v2
- Date: Tue, 2 Aug 2022 09:51:39 GMT
- Title: Efficient protocol for solving combinatorial graph problems on
neutral-atom quantum processors
- Authors: Wesley da Silva Coelho, Mauro D'Arcangelo and Louis-Paul Henry
- Abstract summary: We propose a novel protocol for solving hard graph problems that combines variational quantum computing and machine learning.
Our numerical simulations show that the proposed protocol can reduce dramatically the number of iterations to be run on the quantum device.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: On neutral atom platforms, preparing specific quantum states is usually
achieved by pulse shaping, i.e., by optimizing the time-dependence of the
Hamiltonian related to the system. This process can be extremely costly, as it
requires sampling of the final state in the quantum processor many times.
Hence, determining a good pulse, as well as a good embedding, to solve specific
combinatorial graph problems is one of the most important bottlenecks of the
analog approach. In this work, we propose a novel protocol for solving hard
combinatorial graph problems that combines variational analog quantum computing
and machine learning. Our numerical simulations show that the proposed protocol
can reduce dramatically the number of iterations to be run on the quantum
device. Finally, we assess the quality of the proposed approach by estimating
the related Q-score, a recently proposed metric aimed at benchmarking QPUs.
Related papers
- Quantum topological data analysis via the estimation of the density of
states [17.857341127079305]
We develop a quantum topological data analysis protocol based on the estimation of the density of states (DOS) of the Laplacian.
We test our protocol on noiseless and noisy quantum simulators and run examples on IBM quantum processors.
arXiv Detail & Related papers (2023-12-12T09:43:04Z) - FragQC: An Efficient Quantum Error Reduction Technique using Quantum
Circuit Fragmentation [4.2754140179767415]
We present it FragQC, a software tool that cuts a quantum circuit into sub-circuits when its error probability exceeds a certain threshold.
We achieve an increase of fidelity by 14.83% compared to direct execution without cutting the circuit, and 8.45% over the state-of-the-art ILP-based method.
arXiv Detail & Related papers (2023-09-30T17:38:31Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - Realization of quantum signal processing on a noisy quantum computer [0.4593579891394288]
We propose a strategy to run an entire QSP protocol on noisy quantum hardware by carefully reducing overhead costs at each step.
We test the protocol by running the algorithm on the Quantinuum H1-1 trapped-ion quantum computer powered by Honeywell.
Our results are the first step in the experimental realization of QSP-based quantum algorithms.
arXiv Detail & Related papers (2023-03-09T19:00:17Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Quantum Optimization of Maximum Independent Set using Rydberg Atom
Arrays [39.76254807200083]
We experimentally investigate quantum algorithms for solving the Maximum Independent Set problem.
We find the problem hardness is controlled by the solution degeneracy and number of local minima.
On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions.
arXiv Detail & Related papers (2022-02-18T19:00:01Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.