論文の概要: Resolution enhancement of placenta histological images using deep
learning
- arxiv url: http://arxiv.org/abs/2208.00163v1
- Date: Sat, 30 Jul 2022 08:17:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-02 13:24:43.879544
- Title: Resolution enhancement of placenta histological images using deep
learning
- Title(参考訳): 深層学習による胎盤組織像の解像度向上
- Authors: Arash Rabbani, Masoud Babaei
- Abstract要約: U-netニューラルネットワークモデルの修正版は、低解像度と残像の関係を見つけるために調整されている。
提案手法は, セルの端面における低解像度画像のコントラストを向上するだけでなく, 高解像度の胎盤鮮明な空間の画像に似せた重要な細部とテクスチャを追加した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, a method has been developed to improve the resolution of
histological human placenta images. For this purpose, a paired series of high-
and low-resolution images have been collected to train a deep neural network
model that can predict image residuals required to improve the resolution of
the input images. A modified version of the U-net neural network model has been
tailored to find the relationship between the low resolution and residual
images. After training for 900 epochs on an augmented dataset of 1000 images,
the relative mean squared error of 0.003 is achieved for the prediction of 320
test images. The proposed method has not only improved the contrast of the
low-resolution images at the edges of cells but added critical details and
textures that mimic high-resolution images of placenta villous space.
- Abstract(参考訳): 本研究では,ヒト胎盤の組織像の分解能を向上させる手法を開発した。
この目的のために、入力画像の解像度を改善するために必要な画像残差を予測できるディープニューラルネットワークモデルをトレーニングするために、一連の高解像度画像と低解像度画像が収集された。
U-netニューラルネットワークモデルの修正版は、低解像度と残像の関係を見つけるために調整されている。
1000画像の拡張データセット上で900エポックのトレーニングを行った後、320のテスト画像の予測のために、相対平均二乗誤差0.003を達成する。
提案手法は,セル端の低分解能画像のコントラストを向上させるだけでなく,胎盤振動空間の高分解能画像を模倣する重要な細部やテクスチャを追加した。
関連論文リスト
- Towards Degradation-Robust Reconstruction in Generalizable NeRF [58.33351079982745]
GNeRF(Generalizable Radiance Field)は,シーンごとの最適化を回避する手段として有効であることが証明されている。
GNeRFの強靭性は, ソース画像に現れる様々な種類の劣化に対して限定的に研究されている。
論文 参考訳(メタデータ) (2024-11-18T16:13:47Z) - Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
超解像アルゴリズムは、同一シーンから撮影された1つ以上の低解像度画像を高解像度画像に変換する。
再構成過程における画像の特徴抽出と非線形マッピング手法は,既存のアルゴリズムでは依然として困難である。
目的は、高解像度の画像から高品質で高解像度の画像を復元することである。
論文 参考訳(メタデータ) (2024-07-18T06:50:39Z) - Spectral Bandwidth Recovery of Optical Coherence Tomography Images using
Deep Learning [0.6990493129893112]
取得速度を向上する技術開発は、しばしばスペクトル帯域幅が狭くなり、したがって軸方向分解能が低くなる。
従来,OCTのサブサンプルデータを再構成するために画像処理技術が用いられてきた。
本研究では,スペクトル領域におけるガウスウィンドウ化による軸方向スキャン(Aスキャン)分解能の低下をシミュレートし,画像特徴再構成のための学習的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-01-02T02:18:32Z) - Deep Learning Neural Network for Lung Cancer Classification: Enhanced
Optimization Function [28.201018420730332]
本研究の目的は、畳み込みニューラルネットワークのプール層におけるマルチスペース画像を用いて、全体的な予測精度の向上と、処理時間を短縮することである。
提案手法は,畳み込みニューラルネットワークのプール層におけるマルチスペース画像を用いて,全体の精度を向上させるオートエンコーダシステムと肺がんの予測を行う。
論文 参考訳(メタデータ) (2022-08-05T18:41:17Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
本研究では,金属インプラントとの接触部における骨成長の計算アルゴリズムを開発した。
骨とインプラント組織はトレーニングデータセットに手動でセグメンテーションされた。
ネットワーク精度の面では、モデルは約98%に達した。
論文 参考訳(メタデータ) (2022-04-22T08:17:20Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Boosted EfficientNet: Detection of Lymph Node Metastases in Breast
Cancer Using Convolutional Neural Network [6.444922476853511]
The Convolutional Neutral Network (CNN) は乳癌のリンパ節転移の予測と分類に応用されている。
そこで本研究では,小さな解像度画像を容易にするためのRandom Center Cropping (RCC) という新しいデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2020-10-10T15:18:56Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Bayesian Conditional GAN for MRI Brain Image Synthesis [0.0]
本稿では, 画像合成精度を向上させるため, ベイズ条件生成対向ネットワーク (GAN) をコンクリートドロップアウトで用いることを提案する。
この方法は102名の被験者の脳腫瘍データセットを用いてT1wからT2wのMR画像変換によって検証される。
従来のベイズニューラルネットワークとモンテカルロのドロップアウトを比較すると,提案手法の結果はp値0.0186の相当低いRMSEに達する。
論文 参考訳(メタデータ) (2020-05-25T00:58:23Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。