Learning to generate Reliable Broadcast Algorithms
- URL: http://arxiv.org/abs/2208.00525v1
- Date: Sun, 31 Jul 2022 21:45:20 GMT
- Title: Learning to generate Reliable Broadcast Algorithms
- Authors: Diogo Vaz, David R. Matos, Miguel L. Pardal, Miguel Correia
- Abstract summary: This work presents an intelligent agent that uses Reinforcement Learning to generate correct and efficient fault-tolerant distributed algorithms.
We show that our approach is able to generate correct fault-tolerant Reliable Broadcast algorithms with the same performance of others available in the literature, in only 12,000 learning episodes.
- Score: 10.77039660100327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern distributed systems are supported by fault-tolerant algorithms, like
Reliable Broadcast and Consensus, that assure the correct operation of the
system even when some of the nodes of the system fail. However, the development
of distributed algorithms is a manual and complex process, resulting in
scientific papers that usually present a single algorithm or variations of
existing ones. To automate the process of developing such algorithms, this work
presents an intelligent agent that uses Reinforcement Learning to generate
correct and efficient fault-tolerant distributed algorithms. We show that our
approach is able to generate correct fault-tolerant Reliable Broadcast
algorithms with the same performance of others available in the literature, in
only 12,000 learning episodes.
Related papers
- A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent [57.64826450787237]
We show how to analyze the behavior of distributed gradient descent algorithms in the presence of adversarial corruptions.
We show how to use ideas from (lazy) mirror descent to design a corruption-tolerant distributed optimization algorithm.
Experiments based on linear regression, support vector classification, and softmax classification on the MNIST dataset corroborate our theoretical findings.
arXiv Detail & Related papers (2024-07-19T08:29:12Z) - Multi-Agent Bandit Learning through Heterogeneous Action Erasure Channels [21.860440468189044]
Multi-Armed Bandit (MAB) systems are witnessing an upswing in applications within multi-agent distributed environments.
In such settings, communication between agents executing actions and the primary learner making decisions can hinder the learning process.
We introduce novel algorithms that enable learners to interact concurrently with distributed agents across heterogeneous action erasure channels.
arXiv Detail & Related papers (2023-12-21T19:21:19Z) - Measuring, Interpreting, and Improving Fairness of Algorithms using
Causal Inference and Randomized Experiments [8.62694928567939]
We present an algorithm-agnostic framework (MIIF) to Measure, Interpret, and Improve the Fairness of an algorithmic decision.
We measure the algorithm bias using randomized experiments, which enables the simultaneous measurement of disparate treatment, disparate impact, and economic value.
We also develop an explainable machine learning model which accurately interprets and distills the beliefs of a blackbox algorithm.
arXiv Detail & Related papers (2023-09-04T19:45:18Z) - The Clock and the Pizza: Two Stories in Mechanistic Explanation of
Neural Networks [59.26515696183751]
We show that algorithm discovery in neural networks is sometimes more complex.
We show that even simple learning problems can admit a surprising diversity of solutions.
arXiv Detail & Related papers (2023-06-30T17:59:13Z) - A Generalist Neural Algorithmic Learner [18.425083543441776]
We build a single graph neural network processor capable of learning to execute a wide range of algorithms.
We show that it is possible to effectively learn algorithms in a multi-task manner, so long as we can learn to execute them well in a single-task regime.
arXiv Detail & Related papers (2022-09-22T16:41:33Z) - Learning with Differentiable Algorithms [6.47243430672461]
This thesis explores combining classic algorithms and machine learning systems like neural networks.
The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm.
In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable sorting gates, and differentiable logic gate networks.
arXiv Detail & Related papers (2022-09-01T17:30:00Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Identifying Co-Adaptation of Algorithmic and Implementational
Innovations in Deep Reinforcement Learning: A Taxonomy and Case Study of
Inference-based Algorithms [15.338931971492288]
We focus on a series of inference-based actor-critic algorithms to decouple their algorithmic innovations and implementation decisions.
We identify substantial performance drops whenever implementation details are mismatched for algorithmic choices.
Results show which implementation details are co-adapted and co-evolved with algorithms.
arXiv Detail & Related papers (2021-03-31T17:55:20Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.