論文の概要: Performance Comparison of Deep RL Algorithms for Energy Systems Optimal
Scheduling
- arxiv url: http://arxiv.org/abs/2208.00728v1
- Date: Mon, 1 Aug 2022 10:25:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-02 14:57:07.241816
- Title: Performance Comparison of Deep RL Algorithms for Energy Systems Optimal
Scheduling
- Title(参考訳): エネルギーシステム最適スケジューリングのための深部RLアルゴリズムの性能比較
- Authors: Hou Shengren, Edgar Mauricio Salazar, Pedro P. Vergara, Peter Palensky
- Abstract要約: DRL(Deep Reinforcement Learning)アルゴリズムは、再生可能エネルギーベースの生成の導入による不確実性の増加に対処することができる。
本稿では,DDPG,TD3,SAC,PPOなどのDRLアルゴリズムの性能比較を行った。
その結果、DRLアルゴリズムは、目に見えない運用シナリオであっても、リアルタイムに高品質なソリューションを提供する能力を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Taking advantage of their data-driven and model-free features, Deep
Reinforcement Learning (DRL) algorithms have the potential to deal with the
increasing level of uncertainty due to the introduction of renewable-based
generation. To deal simultaneously with the energy systems' operational cost
and technical constraints (e.g, generation-demand power balance) DRL algorithms
must consider a trade-off when designing the reward function. This trade-off
introduces extra hyperparameters that impact the DRL algorithms' performance
and capability of providing feasible solutions. In this paper, a performance
comparison of different DRL algorithms, including DDPG, TD3, SAC, and PPO, are
presented. We aim to provide a fair comparison of these DRL algorithms for
energy systems optimal scheduling problems. Results show DRL algorithms'
capability of providing in real-time good-quality solutions, even in unseen
operational scenarios, when compared with a mathematical programming model of
the energy system optimal scheduling problem. Nevertheless, in the case of
large peak consumption, these algorithms failed to provide feasible solutions,
which can impede their practical implementation.
- Abstract(参考訳): データ駆動型およびモデルフリー機能を活用して、Deep Reinforcement Learning (DRL)アルゴリズムは、再生可能ベース生成の導入による不確実性の増加に対処する可能性がある。
エネルギーシステムの運用コストと技術的制約を同時に扱うためには、DRLアルゴリズムは報酬関数を設計する際にトレードオフを考慮する必要がある。
このトレードオフは、DRLアルゴリズムのパフォーマンスと実現可能なソリューションを提供する能力に影響を与える余分なハイパーパラメータを導入する。
本稿では,DDPG,TD3,SAC,PPOを含む異なるDRLアルゴリズムの性能比較を行った。
エネルギーシステムの最適スケジューリング問題に対して,これらのDRLアルゴリズムを公平に比較することを目的としている。
その結果,エネルギー系最適スケジューリング問題の数学的プログラミングモデルと比較した場合,DRLアルゴリズムが実時間で良質なソリューションを提供する能力を示した。
それにもかかわらず、ピーク消費が大きい場合、これらのアルゴリズムは実現可能なソリューションを提供しず、実用的な実装を阻害する可能性がある。
関連論文リスト
- Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
本稿では、時間窓を用いた多目的車両ルーティング問題(MOVRPTW)に対処するために、ウェイト・アウェア・ディープ・強化学習(WADRL)手法を提案する。
WADRLの結果を最適化するために非支配的ソート遺伝的アルゴリズム-II (NSGA-II) 法を用いる。
論文 参考訳(メタデータ) (2024-07-18T02:46:06Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Deep reinforcement learning for machine scheduling: Methodology, the
state-of-the-art, and future directions [2.4541568670428915]
マシンスケジューリングは、製造ルールとジョブ仕様に準拠しながら、マシンへのジョブ割り当てを最適化することを目的としている。
人工知能の重要な構成要素であるDeep Reinforcement Learning (DRL)は、ゲームやロボティクスなど、さまざまな分野において有望であることを示している。
本稿では、DRLに基づくアプローチの総合的なレビューと比較を行い、その方法論、応用、利点、限界を明らかにする。
論文 参考訳(メタデータ) (2023-10-04T22:45:09Z) - A Constraint Enforcement Deep Reinforcement Learning Framework for
Optimal Energy Storage Systems Dispatch [0.0]
エネルギー貯蔵システム(ESS)の最適供給は、動的価格の変動、需要消費、再生可能エネルギーの発生による深刻な課題を提起する。
ディープニューラルネットワーク(DNN)の一般化機能を活用することで、ディープ強化学習(DRL)アルゴリズムは、分散ネットワークの性質に適応して応答する良質な制御モデルを学ぶことができる。
本稿では,オンライン操作における環境や行動空間の運用制約を厳格に実施しながら,継続的な行動空間を効果的に処理するDRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-26T17:12:04Z) - Optimal Planning of Hybrid Energy Storage Systems using Curtailed
Renewable Energy through Deep Reinforcement Learning [0.0]
エネルギー貯蔵システム(ESS)を計画するためのポリシーに基づくアルゴリズムを用いた高度な深層強化学習手法を提案する。
定量的性能比較の結果、DRLエージェントはシナリオベース最適化(SO)アルゴリズムよりも優れていた。
その結果、DRLエージェントは人間の専門家が行うように学習し、提案手法の信頼性が示唆された。
論文 参考訳(メタデータ) (2022-12-12T02:24:50Z) - DRL-based Slice Placement Under Non-Stationary Conditions [0.8459686722437155]
我々は,非定常プロセスに従ってスライス要求が到着するという仮定の下で,最適ネットワークスライス配置のためのオンライン学習を検討する。
具体的には、2つの純DRLアルゴリズムと2つのハイブリッドDRLヒューリスティックアルゴリズムを提案する。
提案したハイブリッドDRLヒューリスティックアルゴリズムは、収束を達成するために、純DRLよりも少ない3桁の学習エピソードを必要とすることを示す。
論文 参考訳(メタデータ) (2021-08-05T10:05:12Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
より原理的な方法で過大評価を防止するオフライン強化学習アルゴリズムを提案する。
提案アルゴリズムであるOptiDICEは,最適ポリシーの定常分布補正を直接推定する。
OptiDICEは最先端の手法と競合して動作することを示す。
論文 参考訳(メタデータ) (2021-06-21T00:43:30Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
本稿では、強化学習(RL)と従来の運用研究(OR)アルゴリズムを組み合わせた2段階のフレームワークを開発する。
スケジューリング問題は,有限マルコフ決定過程 (MDP) と混合整数計画過程 (mixed-integer programming process) の2段階で解決される。
その結果,本アルゴリズムは,アジャイルな地球観測衛星スケジューリング問題に対して,安定かつ効率的に十分なスケジューリング計画を得ることができた。
論文 参考訳(メタデータ) (2021-03-10T03:16:12Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Stacked Auto Encoder Based Deep Reinforcement Learning for Online
Resource Scheduling in Large-Scale MEC Networks [44.40722828581203]
オンラインリソーススケジューリングフレームワークは、IoT(Internet of Things)の全ユーザに対して、重み付けされたタスクレイテンシの総和を最小化するために提案されている。
以下を含む深層強化学習(DRL)に基づく解法を提案する。
DRLがポリシーネットワークをトレーニングし、最適なオフロードポリシーを見つけるのを支援するために、保存および優先されたエクスペリエンスリプレイ(2p-ER)を導入する。
論文 参考訳(メタデータ) (2020-01-24T23:01:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。