論文の概要: Optimal Planning of Hybrid Energy Storage Systems using Curtailed
Renewable Energy through Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2212.05662v1
- Date: Mon, 12 Dec 2022 02:24:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 18:43:20.693048
- Title: Optimal Planning of Hybrid Energy Storage Systems using Curtailed
Renewable Energy through Deep Reinforcement Learning
- Title(参考訳): 深部強化学習による包括再生エネルギーを用いたハイブリッドエネルギー貯蔵システムの最適計画
- Authors: Dongju Kang, Doeun Kang, Sumin Hwangbo, Haider Niaz, Won Bo Lee, J.
Jay Liu, Jonggeol Na
- Abstract要約: エネルギー貯蔵システム(ESS)を計画するためのポリシーに基づくアルゴリズムを用いた高度な深層強化学習手法を提案する。
定量的性能比較の結果、DRLエージェントはシナリオベース最適化(SO)アルゴリズムよりも優れていた。
その結果、DRLエージェントは人間の専門家が行うように学習し、提案手法の信頼性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy management systems (EMS) are becoming increasingly important in order
to utilize the continuously growing curtailed renewable energy. Promising
energy storage systems (ESS), such as batteries and green hydrogen should be
employed to maximize the efficiency of energy stakeholders. However, optimal
decision-making, i.e., planning the leveraging between different strategies, is
confronted with the complexity and uncertainties of large-scale problems. Here,
we propose a sophisticated deep reinforcement learning (DRL) methodology with a
policy-based algorithm to realize the real-time optimal ESS planning under the
curtailed renewable energy uncertainty. A quantitative performance comparison
proved that the DRL agent outperforms the scenario-based stochastic
optimization (SO) algorithm, even with a wide action and observation space.
Owing to the uncertainty rejection capability of the DRL, we could confirm a
robust performance, under a large uncertainty of the curtailed renewable
energy, with a maximizing net profit and stable system. Action-mapping was
performed for visually assessing the action taken by the DRL agent according to
the state. The corresponding results confirmed that the DRL agent learns the
way like what a human expert would do, suggesting reliable application of the
proposed methodology.
- Abstract(参考訳): エネルギー管理システム(EMS)は、継続的に成長する再生可能エネルギーを活用するためにますます重要になっている。
エネルギー利害関係者の効率を最大化するために、電池やグリーン水素などのエネルギー貯蔵システム(ESS)のプロムリングを行う必要がある。
しかし、異なる戦略間の活用を計画する最適な意思決定は、大規模問題の複雑さと不確実性に直面している。
そこで本研究では,再生可能エネルギーの不確実性を考慮したリアルタイムな ESS 計画を実現するために,ポリシーベースアルゴリズムを用いた高度強化学習手法を提案する。
定量的な性能比較により、DRLエージェントは広い動作と観測空間であってもシナリオベース確率最適化(SO)アルゴリズムよりも優れていた。
DRLの不確実性拒絶能力により, 再生可能エネルギーの大幅な不確実性の下で, 純利益と安定システムの最大化を図り, 頑健な性能を確認できた。
DRLエージェントの動作を状態に応じて視覚的に評価するためのアクションマッピングを行った。
対応する結果は、drlエージェントが人間の専門家のやり方を学習することを確認し、提案手法の信頼性の高い適用を示唆した。
関連論文リスト
- Deep Reinforcement Learning for Community Battery Scheduling under
Uncertainties of Load, PV Generation, and Energy Prices [5.694872363688119]
本稿では,不確実性が存在する場合に,コミュニティバッテリーシステムのスケジューリングを行うための深層強化学習(RL)戦略を提案する。
コミュニティバッテリーは、ローカルPVエネルギーの統合、ピーク負荷の低減、および調停のためのエネルギー価格変動の活用において、多用途の役割を担っている。
論文 参考訳(メタデータ) (2023-12-04T13:45:17Z) - Interpretable Deep Reinforcement Learning for Optimizing Heterogeneous
Energy Storage Systems [11.03157076666012]
エネルギー貯蔵システム(ESS)はエネルギー市場において重要な要素であり、エネルギー供給者と消費者の両方に役立っている。
エネルギー市場におけるESSの柔軟性を高めるために、異種太陽光発電(PV-ESS)を提案する。
我々は、現実のシナリオを反映して、劣化、資本、運用・保守コストを考慮した包括的コスト関数を開発する。
論文 参考訳(メタデータ) (2023-10-20T02:26:17Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Multi-market Energy Optimization with Renewables via Reinforcement
Learning [1.0878040851638]
本稿では,再生可能エネルギーと貯蔵量を組み合わせた発電プラントの運転を最適化するための深層強化学習フレームワークを提案する。
このフレームワークは、ストレージデバイスによる時間結合、再生可能エネルギー生成の不確実性、エネルギー価格、非線形ストレージモデルなどの複雑さを扱う。
複雑なストレージモデルを統合するためにRLを使用し、凸と微分可能なコンポーネントモデルを必要とする最適化ベースのメソッドの制限を克服する。
論文 参考訳(メタデータ) (2023-06-13T21:35:24Z) - Optimal Scheduling in IoT-Driven Smart Isolated Microgrids Based on Deep
Reinforcement Learning [10.924928763380624]
深部強化学習(DRL)によるモノ駆動マイクログリッド(MG)におけるディーゼル発電機(DG)のスケジューリング問題について検討する。
DRLエージェントは、過去の履歴再生およびロードデータから最適なポリシーを学習する。
目標は、需給バランスを確保するという前提で運用コストを削減することである。
論文 参考訳(メタデータ) (2023-04-28T23:52:50Z) - Empirical Analysis of AI-based Energy Management in Electric Vehicles: A
Case Study on Reinforcement Learning [9.65075615023066]
強化学習ベース(RLベース)エネルギー管理戦略(EMS)は、複数の電力源を持つ電気自動車のエネルギー管理において有望な解決策であると考えられる。
本稿では, プラグインハイブリッド電気自動車 (PHEV) と燃料電池電気自動車 (FCEV) におけるRL系EMSの実証分析について述べる。
論文 参考訳(メタデータ) (2022-12-18T20:12:20Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
本稿では、自律制御と再生可能エネルギー資源のスマート電力グリッドシステムへの統合のための多エージェント深層強化学習(DRL)フレームワークを提案する。
特に,提案フレームワークは,住宅利用者に対する需要応答 (DR) と分散エネルギー管理 (DEM) を共同で検討している。
論文 参考訳(メタデータ) (2022-11-29T01:18:58Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。