論文の概要: Lossy compression of multidimensional medical images using sinusoidal
activation networks: an evaluation study
- arxiv url: http://arxiv.org/abs/2208.01602v2
- Date: Wed, 3 Aug 2022 15:24:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-04 11:26:33.226347
- Title: Lossy compression of multidimensional medical images using sinusoidal
activation networks: an evaluation study
- Title(参考訳): 正弦波アクティベーションネットワークを用いた多次元医用画像のロシー圧縮 : 評価研究
- Authors: Matteo Mancini, Derek K. Jones, Marco Palombo
- Abstract要約: 我々は, 周期的活性化機能を持つニューラルネットワークを用いて, 大規模多次元医用画像データセットを確実に圧縮する方法を評価する。
正弦波アクティベーションネットワークのパラメータを用いて,任意の4次元dMRIデータセットを正確に表現する方法を示す。
その結果,提案手法は平均二乗誤差,ピーク信号-雑音比,構造類似度指数において,ReLUとTanhのアクティベーションパーセプトロンアーキテクチャよりも優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we evaluate how neural networks with periodic activation
functions can be leveraged to reliably compress large multidimensional medical
image datasets, with proof-of-concept application to 4D diffusion-weighted MRI
(dMRI). In the medical imaging landscape, multidimensional MRI is a key area of
research for developing biomarkers that are both sensitive and specific to the
underlying tissue microstructure. However, the high-dimensional nature of these
data poses a challenge in terms of both storage and sharing capabilities and
associated costs, requiring appropriate algorithms able to represent the
information in a low-dimensional space. Recent theoretical developments in deep
learning have shown how periodic activation functions are a powerful tool for
implicit neural representation of images and can be used for compression of 2D
images. Here we extend this approach to 4D images and show how any given 4D
dMRI dataset can be accurately represented through the parameters of a
sinusoidal activation network, achieving a data compression rate about 10 times
higher than the standard DEFLATE algorithm. Our results show that the proposed
approach outperforms benchmark ReLU and Tanh activation perceptron
architectures in terms of mean squared error, peak signal-to-noise ratio and
structural similarity index. Subsequent analyses using the tensor and spherical
harmonics representations demonstrate that the proposed lossy compression
reproduces accurately the characteristics of the original data, leading to
relative errors about 5 to 10 times lower than the benchmark JPEG2000 lossy
compression and similar to standard pre-processing steps such as MP-PCA
denosing, suggesting a loss of information within the currently accepted levels
for clinical application.
- Abstract(参考訳): 本研究では4次元拡散強調MRI(dMRI)に対する概念実証を用いて,周期的活性化機能を持つニューラルネットワークを用いて,大規模多次元医用画像データセットを確実に圧縮する方法を評価する。
医用画像のランドスケープでは、多次元MRIは基盤組織の微細構造に敏感かつ特異的なバイオマーカーを開発するための重要な研究領域である。
しかし、これらのデータの高次元性は、ストレージと共有能力と関連するコストの両方において問題となり、低次元空間で情報を表現できる適切なアルゴリズムが必要となる。
近年のディープラーニングの理論的発展は、周期的アクティベーション関数が画像の暗黙的なニューラル表現の強力なツールであり、2次元画像の圧縮に利用できることを示している。
本稿では,本手法を4次元画像に拡張し,正弦波アクティベーションネットワークのパラメータを用いて,任意の4次元dMRIデータセットを正確に表現できることを示し,標準のDEFLATEアルゴリズムの約10倍の速度でデータ圧縮を実現する。
その結果,提案手法は平均二乗誤差,ピーク信号-雑音比,構造類似度指数において,ReLUとTanhのアクティベーションパーセプトロンアーキテクチャよりも優れていた。
その後のテンソルと球面調和表現を用いた解析により、提案される損失圧縮は元のデータの特性を正確に再現し、ベンチマークjpeg2000の損失圧縮の約5倍から10倍の相対誤差を生じさせ、mp-pcaデノシングのような標準的な前処理ステップと類似していることが示されている。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - NeRF Solves Undersampled MRI Reconstruction [1.3597551064547502]
本稿では,Neural Radiance Field(NeRF)の概念を利用したMRI技術について述べる。
ラジアルアンダーサンプリングにより、対応する撮像問題をスパースビューレンダリングデータから画像モデリングタスクに再構成することができる。
空間座標から画像強度を出力する多層パーセプトロンは、所定の測定データと所望の画像との間のMR物理駆動レンダリング関係を学習する。
論文 参考訳(メタデータ) (2024-02-20T18:37:42Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - A Compact Implicit Neural Representation for Efficient Storage of
Massive 4D Functional Magnetic Resonance Imaging [14.493622422645053]
fMRI圧縮は、複雑な時間的ダイナミクス、低信号-雑音比、複雑な基礎的冗長性のために、ユニークな課題を生んでいる。
Inlicit Neural Representation (INR)に基づくfMRIデータに適した新しい圧縮パラダイムについて報告する。
論文 参考訳(メタデータ) (2023-11-30T05:54:37Z) - IMJENSE: Scan-specific Implicit Representation for Joint Coil
Sensitivity and Image Estimation in Parallel MRI [11.159664312706704]
IMJENSEは、並列MRI再構成を改善するためのスキャン特異的暗黙の神経表現に基づく方法である。
IMJENSEは、MRI画像とコイル感度の強力な連続表現と共同推定により、従来の画像やk空間領域再構成アルゴリズムよりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-11-21T07:24:11Z) - Image Compression and Decompression Framework Based on Latent Diffusion
Model for Breast Mammography [0.0]
本研究では,潜在拡散モデル(LDM)を用いた医用画像の圧縮・圧縮のための新しい枠組みを提案する。
LDMは, 拡散確率モデル (DDPM) の進歩を表現し, 優れた画質が得られる可能性が示唆された。
医用画像データを用いた画像アップスケーリングにおけるLCMとTorchvisionの応用の可能性について検討した。
論文 参考訳(メタデータ) (2023-10-08T22:08:59Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
本稿では,MRIの高速化による高画質画像の再構成を目的としたディープラーニング手法を提案する。
具体的には、畳み込みニューラルネットワーク(CNN)を用いて、エイリアス画像と元の画像の違いを学習する。
ダウンサンプリングされたk空間データの特異性を考慮すると、与えられたk空間データを効果的に活用する学習における損失関数に新しい用語を導入する。
論文 参考訳(メタデータ) (2020-01-13T19:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。