Quantum Approximate Optimization Algorithm in Non-Markovian Quantum
Systems
- URL: http://arxiv.org/abs/2208.02066v2
- Date: Fri, 1 Sep 2023 14:00:29 GMT
- Title: Quantum Approximate Optimization Algorithm in Non-Markovian Quantum
Systems
- Authors: Bo Yue, Shibei Xue, Yu Pan, Min Jiang
- Abstract summary: This paper presents a framework for running QAOA on non-Markovian quantum systems.
We mathematically formulate QAOA as piecewise Hamiltonian control of the augmented system.
We show that non-Markovianity can be utilized as a quantum resource to achieve a relatively good performance of QAOA.
- Score: 5.249219039097684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although quantum approximate optimization algorithm (QAOA) has demonstrated
its quantum supremacy, its performance on Noisy Intermediate-Scale Quantum
(NISQ) devices would be influenced by complicated noises, e.g., quantum colored
noises. To evaluate the performance of QAOA under these noises, this paper
presents a framework for running QAOA on non-Markovian quantum systems which
are represented by an augmented system model. In this model, a non-Markovian
environment carrying quantum colored noises is modelled as an ancillary system
driven by quantum white noises which is directly coupled to the corresponding
principal system; i.e., the computational unit for the algorithm. With this
model, we mathematically formulate QAOA as piecewise Hamiltonian control of the
augmented system, where we also optimize the control depth to fit into the
circuit depth of current quantum devices. For efficient simulation of QAOA in
non-Markovian quantum systems, a boosted algorithm using quantum trajectory is
further presented. Finally, we show that non-Markovianity can be utilized as a
quantum resource to achieve a relatively good performance of QAOA, which is
characterized by our proposed exploration rate.
Related papers
- Noise-Aware Distributed Quantum Approximate Optimization Algorithm on Near-term Quantum Hardware [2.753858051267023]
This paper introduces a noise-aware distributed Quantum Approximate Optimization Algorithm (QAOA) tailored for execution on near-term quantum hardware.
We address the limitations of current Noisy Intermediate-Scale Quantum (NISQ) devices, which are hindered by limited qubit counts and high error rates.
arXiv Detail & Related papers (2024-07-24T14:50:01Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation
via Neural Networks [0.4779196219827508]
Variational Quantum Eigensolver (VQE) is a promising algorithm for solving complex quantum problems.
The ubiquitous presence of noise in quantum devices often limits the accuracy and reliability of VQE outcomes.
This research introduces a novel approach by utilizing neural networks for zero noise extrapolation (ZNE) in VQE computations.
arXiv Detail & Related papers (2024-03-10T15:35:41Z) - Variational Quantum Eigensolvers with Quantum Gaussian Filters for solving ground-state problems in quantum many-body systems [2.5425769156210896]
We present a novel quantum algorithm for approximating the ground-state in quantum many-body systems.
Our approach integrates Variational Quantum Eigensolvers (VQE) with Quantum Gaussian Filters (QGF)
Our method shows improved convergence speed and accuracy, particularly under noisy conditions.
arXiv Detail & Related papers (2024-01-24T14:01:52Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
We show that policy-gradient-based reinforcement learning algorithms are well suited for optimizing the variational parameters of QAOA in a noise-robust fashion.
We analyze the performance of the algorithm for quantum state transfer problems in single- and multi-qubit systems.
arXiv Detail & Related papers (2020-02-04T00:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.